skip to main content
research-article
Free Access

Biology as reactivity

Published:01 October 2011Publication History
Skip Abstract Section

Abstract

Exploring the connection of biology with reactive systems to better understand living systems.

References

  1. Alur, R. and Dill, D. Automata for modeling real-time systems. In Proc. Int. Conf. Automata, Languages, and Programming 17 (1990), 322--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alur, R. and Henzinger, T.A. Reactive modules. Formal Methods in System Design 15, 7 (1999), 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amir-Kroll, H., Sadot, A., Cohen, I.R. and Harel, D. GemCell: a generic platform for modeling multi-cellular biological systems. Theoret. Comput. Sci. 391, 3 (2008), 276--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arkin, A., Ross, J. and McAdams, H.H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells. Genetics 149 (1998), 1633--1648.Google ScholarGoogle ScholarCross RefCross Ref
  5. Baker, M.D., Wolanin, P.M. and Stock, J.B. Signal transduction in bacterial chemotaxis. Bioessays 28 (2006), 9--22.Google ScholarGoogle ScholarCross RefCross Ref
  6. Barjis, J. and Barjis, I. Formalization of the protein production by means of petri nets. Proc. Int. Conf. on Information Intelligence Systems (1999), IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Batt, G., Ropers, D., De Jong, H., Geiselman, J., Mateescu, R., Page, M., and Schneider, D. Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia Coli. Bioinformatics 21 (2005), 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Blinov, M.L., Faeder, J.R., Goldstein, B. and Hlavacek, W.S. BioNetGen: Software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20 (2001), 3289--3291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Calder, M., Vyshemirsky, V., Gilbert, D. and Orton, R. Analysis of signaling pathways using the prism model checker. In Proc. 3rd International Conference on Computational Methods in Systems Biology. G. Plotkin, ed. (Edinburgh, Scotland, 2005), 179--190.Google ScholarGoogle Scholar
  10. Calzone, L., Fages, F. and Soliman, S. BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22, 14 (2006), 1805--1807. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cardelli, L. Brane caluli. In Proc. Computational Methods in Systems Biology (Paris, May 26, 2004) V. Danos and V. Schächter, eds. LNCS 3082, 257 (2004).Google ScholarGoogle Scholar
  12. Cardelli, L. Abstract machines of systems biology. In Transactions on Computational Systems Biology III. C. Priami et al. eds. LNCS 3737, (2005), 145--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cerny, P., Henzinger, T.A. and Radhakrishna, A. Simulation distances. In Proc. Concurrency Theory 2010. LNCS 2011, 253--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith, H. Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50, (2003), 752--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Clarke, E., Grumberg, O. and Peled, D. Model Checking, MIT press, 2000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cohen, I.R. and Harel, D. Explaining a complex living system: Dynamics, multi-scaling and emergence. J. Royal Society Interface 4, (2007), 175--182.Google ScholarGoogle ScholarCross RefCross Ref
  17. Cousot, P. and Cousot, R. Abstract interpretation. In Proc. Symp. Principles of Programming Languages 4, (1977), 238--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Curti, M., Degano, P., Priami, C. and Baldari, C. Modeling biochemical pathways through enhanced pi-calculus. Theor. Comput. Sci. 325, (2004), 111--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Damm, W. and Harel, D. LSCs: Breathing life into message sequence charts. Formal Methods in System Design 19, 1, (2001), 45--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Danos, V., Feret, J., Fontana, W., Harmer, R. and Krivine, J. Rule-based modelling of cellular signalling. Concur 2007, LNCS 4703, 17--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Didier, F., Henzinger, T.A., Mateescu, M. and Wolf, V. Approximation of event probabilities in noisy cellular processes. Computational Methods in Systems Biology 7, (2009) 173--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Didier, F., Henzinger, T.A., Mateescu, M. and Wolf, V. Fast adaptive uniformization of the chemical master equation. High-Performance Computational Systems Biology 1, (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Dill, D.L., Knapp, M.A., Gage, P., Talcott, C., Laderoute, K. and Lincoln, P. The Pathalyzer: A tool for analysis of signal transduction pathways. In Proc. 1st Annual Recomb Satellite Workshop on Systems Biology, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Efroni, S., Harel, D. and Cohen, I.R. Reactive animation: Realistic modeling of complex dynamic systems. Computer 38, (2005), 38--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Efroni, S., Harel, D., and Cohen, I.R. Emergent dynamics of thymocyte development and lineage determination. PLoS Computational Biology 3, 1 (2007), 127--136.Google ScholarGoogle ScholarCross RefCross Ref
  26. Elowitz, M.B., Levine, A.J., Siggia, E.D. and Swain, P.S. Stochastic gene expression in a single cell. Science 297, (2002), 1183--1186.Google ScholarGoogle ScholarCross RefCross Ref
  27. Emerson, E.A. Temporal and modal logic. In Handbook of Theoretical Computer Science, (1990), 995--1072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Faeder, J.R., Hlavacek, J.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A., Wofsy, C. and Goldstein, B. Investigation of early events in FCεRI-mediated signaling using a detailed mathematical model. J. Immunol. 170, (2003), 3769--3781.Google ScholarGoogle ScholarCross RefCross Ref
  29. Fedoroff, N. and Fontana, W. Small numbers of big molecules. Science 297, (2002), 1129--1131.Google ScholarGoogle ScholarCross RefCross Ref
  30. Feret, J., Danos, V., Krivine, J., Harmer, R. and Fontana, W. Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. 106, 16, (2009), 6453--6458.Google ScholarGoogle ScholarCross RefCross Ref
  31. Fisher, J., Piterman, N., Hajnal, A., and Henzinger, T.A. Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Computational Biology 3, 5, (2007) 92.Google ScholarGoogle ScholarCross RefCross Ref
  32. Fisher, J., and Henzinger, T.A. Executable cell biology. Nat. Biotechnol. 25, 11, (2007), 1239--49.Google ScholarGoogle ScholarCross RefCross Ref
  33. Fisher, J., Henzinger, T.A., Mateescu, M. and Piterman, N. Bounded asynchrony: A biologically-inspired notion of concurrency. In Proc. of FMSB '08 Cambridge, UK. Springer, 2008.Google ScholarGoogle Scholar
  34. Fisher, J., Piterman, N., Hubbard, E.J., Stern, M.J. and Harel, D. Computational insights into Caenorhabditis elegans vulval development. In Proc. Natl. Acad. Sci. USA 102, (2005), 1951--1956.Google ScholarGoogle ScholarCross RefCross Ref
  35. Ghosh, R. and Tomlin, C.J. Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta-Notch protein signaling. IEE Transactions on Systems Biology 1, 1, (2004), 170--183.Google ScholarGoogle Scholar
  36. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. of Physical Chemistry 81, (1977), 2340--2361.Google ScholarGoogle ScholarCross RefCross Ref
  37. Gillespie, D.T. Markov Processes. 1992: Academic Press.Google ScholarGoogle Scholar
  38. Harel, D. Statecharts: A visual formalism for complex systems. Sci. Comput. Programming 8, (1987), 231--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Harel, D. A grand challenge for computing: Full reactive modeling of a multi-cellular animal. Bulletin of the EATCS 81, (2003), 226--235. (Reprinted in Current Trends in Theoretical Computer Science: The Challenge of the New Century, Algorithms and Complexity, Vol I. G. Paun et al. eds. World Scientific, (2004), 559--568.Google ScholarGoogle Scholar
  40. Harel, D. A Turing-like test for biological modelling. Nature Biotechnology 23, (2005), 495--496.Google ScholarGoogle ScholarCross RefCross Ref
  41. Harel, D. and Gery, E. Executable object modeling with statecharts. Computer 30, 7, (July 1997). IEEE Press, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Harel, D. and Pnueli, A. On the development of reactive systems. In Logics and Models of Concurrent Systems. K.R. Apt, ed. NATO ASI Series, vol. F-13, Springer-Verlag, NY, (1985), 477--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Haugh, J.M., Schneider, I.C. and Lewis, J.M. On the cross-regulation of protein tyrosine phosphatases and receptor tyrosine kinases in intracellular signaling. J. Theor. Biol. 230, (2004), 119--132.Google ScholarGoogle ScholarCross RefCross Ref
  44. Henzinger, T.A., Jobstmann, B. and Wolf, V. Formalisms for specifying Markovian population models. In Proc. 3rd Int. Workshop on Reachability Problems. LNCS 5797, springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Henzinger, T.A., Mateescu, M., Mikeev, L. and Wolf, V. Hybrid numerical solution of the chemical master equation. In Proc. 8th Int. Conf. on Computational Methods in Systems Biology. Lecture Notes in Bioinformatics, Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Henzinger, T.A., and Sifakis, J. The discipline of embedded systems design. IEEE Computer 40, 10, (2007), 36--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., and Fontana, W. Rules for modelling signal transduction systems. Science STKE 2006/344/re6.Google ScholarGoogle Scholar
  48. Kam, N., Harel, D. and Cohen, I.R. Visual Languages and Formal Methods. (Stressa, Italy, Sept. 5--7, 2001). IEEE, 2001.Google ScholarGoogle Scholar
  49. Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J., Pnueli, A., Harel, D., Stern, M.J. and Hubbard, E.J.A. Scenario-based approach to modeling development: A prototype model of C. Elegans vulval cell fate specification. Developmental Biology 323 (2008), 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  50. Kwiatkowska, M., Norman, G. and Parker, D. PRISM: Probabilistic symbolic model checker. In Proc. TOOLS 2002. T. Field et al. eds. LNCS 2324, (2002), 200--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O., Heath, J., and Gaffney, E. Simulation and verification for computational modeling of signalling pathways. In Proc. Winter Simulation Conference (Monterey, CA, Dec. 2--6, 2006). IEEE, 2006, 1666--1674. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Kugler, H., Larjo, A. and Harel, D. Biocharts: A visual formalism for complex biological systems. J. Royal Society Interface, 2010.Google ScholarGoogle Scholar
  53. Lee, K.H., Dinner, A.R., Tu, C., Campi, G., Raychaudhuri, S., Varma, R., Sims, T.N., Burack, W.R., Wu, H., Wang, J., Kanagawa, O., Markiewicz, M., Allen, P.M., Dustin, M.L., Chakraborty, A.K. and Shaw, A.S. The immunological synapse balances T cell receptor signaling and degradation. Science 302, (2003), 1218--1222.Google ScholarGoogle ScholarCross RefCross Ref
  54. Li, Q.J., Dinner, A.R., Qi, S., Irvine, D.J., Huppa, J.B., Davis, M.M., and Chakraborty, A.K. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, (2004)791--799.Google ScholarGoogle ScholarCross RefCross Ref
  55. McAdams, H.H. and Arkin, A. Stochastic mechanisms in gene expression. Proceedings of the National Academy of Science 94, (1997), 814--819.Google ScholarGoogle ScholarCross RefCross Ref
  56. McAdams, H.H. and Arkin, A. It's a noisy business! Trends in Genetics 15, 2 (1999), 65--69.Google ScholarGoogle Scholar
  57. Milner, R. A Calculus of Communicating Systems. Springer Verlag, 1980 Google ScholarGoogle ScholarCross RefCross Ref
  58. Milner, R. Operational and algebraic semantics of concurrent processes. Handbook of Theoretical Computer Science B, (1990), 1201--1242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Milner, R. Communicating and Mobile Systems: The pi-Calculus. Cambridge University Press, Cambridge, UK, 1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Parkinson, J.S., Ames, P. and Studdert, C.A. Collaborative signaling by bacterial chemoreceptors. Curr. Opin. Microbiol. 8, (2005), 116--121.Google ScholarGoogle ScholarCross RefCross Ref
  61. Paulsson, J. Summing up the noise in gene networks. Nature 427, (2004), 415--418.Google ScholarGoogle ScholarCross RefCross Ref
  62. Peterson, J.L. Petri Net Theory and the Modeling of Systems. Prentice hall 1981 Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Pnueli, A. The temporal logic of programs. In Proc. Symp. Found. Computer Science, (1977) 46--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Pnueli, A. and Rosner, R. On the synthesis of a reactive module. In Proc. Symp. Principles of Programming Languages 16, (1989), 179--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Popper, K. The logic of scientific discovery. Hutchinson, London, 1959.Google ScholarGoogle Scholar
  66. Priami, C. The stochastic pi-calculus. Comp. J. 38, (1995), 578--589.Google ScholarGoogle ScholarCross RefCross Ref
  67. Priami, C. Algorithmic systems biology. Comm. ACM 52, 5, (May 2009) 80--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Priami, C., Regev, A., Shapiro, E.Y., and Silverman, W. Application of a stochastic name passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80, (2001) 25--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., and Shapiro, E.Y. Bioambients: An abstraction for biological compartments. Theor. Comput. Sci. 325, (2004), 141--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Regev, A., Silverman, W., and Shapiro, E. Representation and simulation of biochemical processes using the pi-calculus process algebra. Pac. Symp. Biocomput. (2001) 459--470.Google ScholarGoogle Scholar
  71. Sadot, A., Fisher, J., Barak, D., Admanit, Y., Stern, M.J., Hubbard, E.J.A. and Harel, D. Towards verified biological models, Transactions on Computational Biology and Bioinformatics 5,(2008), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Schaub, M.A., Henzinger, T.A., and Fisher, J. Qualitative networks: A symbolic approach to analyze biological signaling networks. BMC Systems Biology 1, (2007).Google ScholarGoogle Scholar
  73. Setty, Y., Cohen, I.R., Dor, Y., and Harel, D. Four-dimensional realistic modeling of pancreatic organogenesis. In Proc. Natl. Acad. Sci. 105, 51 (2008), 20374--20379.Google ScholarGoogle ScholarCross RefCross Ref
  74. Shen, X., Collier, J., Dill, D., Shapiro, L., Horowitz, M. and McAdams, H.H. Architecture and inherent robustness of a bacterial cell-cycle control system. PNAS. 105, 32 (2008), 11340--11345.Google ScholarGoogle ScholarCross RefCross Ref
  75. Thomas, W. Automata on infinite objects. In Handbook of Theoretical Computer Science B, (1990), 133--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Wang, D., Cardelli L., Phillips A., Piterman N. and Fisher J. Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics. In BMC Systems Biology 3, 118, (2009), 22.Google ScholarGoogle ScholarCross RefCross Ref
  77. Wolf, V., Goel, R., Mateescu, M. and Henzinger, T.A. Solving the chemical master equation using sliding windows. BMC Systems Biology 4, 42, (2010).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Biology as reactivity

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image Communications of the ACM
                Communications of the ACM  Volume 54, Issue 10
                October 2011
                126 pages
                ISSN:0001-0782
                EISSN:1557-7317
                DOI:10.1145/2001269
                Issue’s Table of Contents

                Copyright © 2011 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 October 2011

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Popular
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              HTML Format

              View this article in HTML Format .

              View HTML Format