skip to main content
10.1109/SC.2010.6acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
Article

A Parallel Implementation of Electron-Phonon Scattering in Nanoelectronic Devices up to 95k Cores

Published:13 November 2010Publication History

ABSTRACT

A quantum transport approach based on the Non-equilibrium Green's Function formalism and the tight-binding method has been developed to investigate the performances of atomistically resolved nanoelectronic devices in the presence of electron-phonon scattering. The model is integrated into a quad-level parallel environment (bias, momentum, energy, and spatial domain decomposition) that scales almost perfectly up to 220k cores in the ballistic limit of electron transport. In this case, the momentum and energy points form a quasi-embarrassingly parallel problem. The novelty in this paper is the inclusion of scattering self-energies that couple all the momenta and several energies together, requiring substantial inter-processor communication. An efficient parallel implementation of electron-phonon scattering is therefore proposed and applied to a realistically extended transistor structure. A good scaling of the simulation walltime up to 95,256 cores and a sustained performance of 142 TFlop/s are reported on the Cray-XT5 Jaguar.

References

  1. R. Chau, et al., "Silicon Nano-Transistors and Breaking the 10nm Physical Gate Length Barrier", Conference Digest of 61st Device Research Conference, Salt Lake City, Utah 123-126 (2003).Google ScholarGoogle Scholar
  2. D. A. Antoniadis and A. Khakifirooz, "MOSFET performance scaling: Limitations and future options", IEEE International Electron Devices Meeting 2008, Technical Digest, 253256 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  3. W. Haensch et al., "Silicon CMOS devices beyond scaling", IBM J. Res. & Dev. 50, 339-361 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Doris et al., "Extreme scaling with ultra-thin Si channel MOSFETs", IEDM Tech. Dig. 2002, 267-270 (2002).Google ScholarGoogle ScholarCross RefCross Ref
  5. S. D. Suk et al., "Investigation of nanowire size dependency on TSNWFET", IEDM Tech. Dig. 2007, 891-894 (2007).Google ScholarGoogle Scholar
  6. Y. Q. Wu, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara, J. C. M. Hwang and P. D. Ye, "0.8-V Supply Voltage Deep-Submicrometer Inversion-Mode In0.75Ga0.25As MOSFET", IEEE Elec. Dev. Lett. 30, 700-702 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  7. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, "Room Temperature All Semiconducting sub-10nm Graphene Nanoribbon Field-Effect Transistors", Phys. Rev. Lett. 100, 206803 (2008).Google ScholarGoogle Scholar
  8. J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors," Phys. Rev. Lett. 93, 196805 (2004).Google ScholarGoogle Scholar
  9. See the Modeling & Simulation Section of the ITRS at http://www.itrs.net/Links/2009ITRS/Home2009.htmGoogle ScholarGoogle Scholar
  10. M. Luisier, G. Klimeck, A. Schenk, and W. Fichtner, "Atomistic Simulation of Nanowires in the sp3d5s* Tight-Binding Formalism: from Boundary Conditions to Strain Calculations, Phys. Rev. B, 74, 205323 (2006).Google ScholarGoogle Scholar
  11. M. Luisier and A. Schenk, "Atomistic Simulation of Nanowire Transistors", J. of Computational and Theoretical Nanoscience 5, 1-15 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Datta, "Electronic Transport in Mesoscopic Systems", Cambridge University Press (1995).Google ScholarGoogle Scholar
  13. W. R. Frensley, "Boundary conditions for open quantum systems driven far from equilibrium", Rev. Mod. Phys. 62, 745-791 (1990).Google ScholarGoogle Scholar
  14. J. C. Slater and G. F. Koster, "Simplified LCAO Method for the Periodic Potential Problem", Phys. Rev. 94, 1498-1524 (1954).Google ScholarGoogle ScholarCross RefCross Ref
  15. J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani, "Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters, Phys. Rev. B 57, 6493-6507 (1998).Google ScholarGoogle ScholarCross RefCross Ref
  16. T. B. Boykin, G. Klimeck, and F. Oyafuso, "Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization", Phys. Rev. B 69, 115201 (2004).Google ScholarGoogle ScholarCross RefCross Ref
  17. T. B. Boykin, G. Klimeck, R. Chris Bowen, and F. Oyafuso, "Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory", Phys. Rev. B 66, 125207 (2002).Google ScholarGoogle Scholar
  18. M. Luisier and G. Klimeck, "A multi-level parallel simulation approach to electron transport in nano-scale transistors", Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, article 12 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Luisier and G. Klimeck, "Numerical strategies towards peta-scale simulations of nanoelectronics devices", Parallel Computing 36, 117-128 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Luisier, A. Schenk, W. Fichtner, T. B. Boykin, and G. Klimeck, "A parallel sparse linear solver for nearest-neighbor tight-binding problems", Proc. of the 14th international Euro-Par conference on Parallel Processing, 790-800 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. H. Kim and J. A. del Alamo, "30-nm InAs Pseudomorphic HEMTs on an InP Substrate With a Current-Gain Cutoff Frequency of 628 GHz", IEEE Elec. Dev. Lett. 29, 830-833 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  22. G. Klimeck and M. Luisier, "Atomistic Modeling of Realistically Extended Semiconductor Devices with NEMO and OMEN", Computing in Science & Engineering 12, 28-35 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Oktyabrsky and P. Ye, "Fundamentals of III-V Semiconductor MOSFETs", Springer (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Q. Zhang, W. Zhao, and A. C. Seabaugh, "Low-subthreshold-swing transistors", IEEE Elec. Dev. Lett. 27, 297-300 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  25. T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho, "Inelastic transport theory from first principles: Methodology and application to nanoscale devices", Phys. Rev. B 75 205413 (2007).Google ScholarGoogle Scholar
  26. A. Pecchia, G. Romano, and A. Di Carlo, "Theory of heat dissipation in molecular electronics", Phys. Rev. B 75 035401 (2007).Google ScholarGoogle ScholarCross RefCross Ref
  27. Y. Asai, "Nonequilibrium phonon effects on transport properties through atomic and molecular bridge junctions", Phys. Rev. B 78 045434 (2008).Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Luisier and G. Klimeck, "Atomistic full-band simulations of silicon nanowire transistors: Effects of electron-phonon scattering", Phys. Rev. B 80, 155430 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  29. http://www.nccs.gov/computing-resources/jaguar/Google ScholarGoogle Scholar
  30. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, "Single and multiband modeling of quantum electron transport through layered semiconductor devices", J. of Appl. Phys. 81, 7845 (1997).Google ScholarGoogle ScholarCross RefCross Ref
  31. N. Ashcroft and N. Mermin, "Solid State Physics", Rinehart and Winston (1976).Google ScholarGoogle Scholar
  32. P. M. Gresho and R. L. Sani, "Incompressible Flow and the Finite Element Method: Isothermal Laminar Flow", John Wiley and Sons, New York (2000).Google ScholarGoogle Scholar
  33. R. E. Bank, D. J. Rose, and W. Fichtner, "Numerical Methods for Semiconductor Device Simulation", IEEE Trans. Electron Dev. 30, 1031 (1983).Google ScholarGoogle ScholarCross RefCross Ref
  34. W. Gropp, E. Lusk, N. Doss, and A. Skjellum, "A high-performance, portable implementation of the MPI message passing interface standard", Parallel Computing 22, 789 (1996). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Dongarra, "Basic Linear Algebra Subprograms Technical Forum Standard", International Journal of High Performance Applications and Supercomputing, 16, 1-111 (2002).Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, "LAPACK User's Guide", Third Edition, SIAM, Philadelphia (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. O. Schenk and K. Gärtner, "Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO, Journal of Future Generation Computer Systems", J. of Future Generation Computer Systems 20, 475 (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. X. S. Li and J. W. Demmel "SuperLU_DIST: A Scalable Distributed Memory Sparse Direct Solver for Unsymmetric Linear Systems", ACM Trans. on Math. Software 29, 110 (2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. P. R. Amestoy, I. S. Duff, and J.-Y. L'Excellent, "Multifrontal parallel distributed symmetric and unsymmetric solvers" Comput. Methods in Appl. Mech. Eng. 184, 501 (2000).Google ScholarGoogle ScholarCross RefCross Ref
  40. T. A. Davis, "A column pre-ordering strategy for the unsymmetricpattern multifrontal method", ACM Trans. on Math. Software 30, 165 (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid, "Official Aztec User's Guide: Version 2.1" (1999).Google ScholarGoogle Scholar
  42. A. Svizhenko, M. P. Anantram, T. R. Govindan, R. Biegel, and R. Venugopal, "Two-dimensional quantum mechanical modeling of nanotransistors", J. Appl. Phys. 91, 2343-2354 (2002).Google ScholarGoogle ScholarCross RefCross Ref
  43. M. S. Lundstrom, "On the Mobility Versus Drain Current Relation for a Nanoscale MOSFET", IEEE Elc. Dev. Lett. 22, 293-295 (2001).Google ScholarGoogle ScholarCross RefCross Ref
  44. L. P. Kadanoff and G. Baym, "Quantum Statistical Mechanics", W. A. Benjamin Inc, New York (1962).Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SC '10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis
    November 2010
    634 pages
    ISBN:9781424475599

    Publisher

    IEEE Computer Society

    United States

    Publication History

    • Published: 13 November 2010

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    SC '10 Paper Acceptance Rate51of253submissions,20%Overall Acceptance Rate1,516of6,373submissions,24%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader