skip to main content
research-article

Crowd modeling and simulation technologies

Published:05 November 2010Publication History
Skip Abstract Section

Abstract

As a collective and highly dynamic social group, the human crowd is a fascinating phenomenon that has been frequently studied by experts from various areas. Recently, computer-based modeling and simulation technologies have emerged to support investigation of the dynamics of crowds, such as a crowd's behaviors under normal and emergent situations. This article assesses the major existing technologies for crowd modeling and simulation. We first propose a two-dimensional categorization mechanism to classify existing work depending on the size of crowds and the time-scale of the crowd phenomena of interest. Four evaluation criteria have also been introduced to evaluate existing crowd simulation systems from the point of view of both a modeler and an end-user.

We have discussed some influential existing work in crowd modeling and simulation regarding their major features, performance as well as the technologies used in this work. We have also discussed some open problems in the area. This article will provide the researchers with useful information and insights on the state of the art of the technologies in crowd modeling and simulation as well as future research directions.

References

  1. AG, S. S. 2009. Simwalk transport. White paper. http://www.simwalk.com/simwalk_transport/whitepapers/simwalk_trans_09_e.pdf.Google ScholarGoogle Scholar
  2. Aguirre, B. E. 2005. Emergency evacuation, panic, and social psychology: Comment on understanding mass panic and other collective responses to threat and disaster. Psychiatry 68, 2.Google ScholarGoogle Scholar
  3. Antonini, G., Bierlaire, M., and Weber, M. 2006. Discrete choice models of pedestrian walking behavior. Transport. Resear. Part B 40, 667--687.Google ScholarGoogle ScholarCross RefCross Ref
  4. Arentze, T. and Timmermans, H. 2009. A need-based model of multi-day, multi-party activity generation. Transport. Resear. Part B 43, 251--265.Google ScholarGoogle ScholarCross RefCross Ref
  5. Arentze, T., Timmermans, H., Janssens, D., and Wets, G. 2006. Modeling short-term dynamics in activity-travel patterns: from aurora to feathers. In Proceedings of the Innovations in Travel Demand Modeling Conference. 71--77.Google ScholarGoogle Scholar
  6. Bandini, S., Federici, M. L., and Vizzari, G. 2007. Situated cellular agents approach to crowd modeling and simulation. Cybernetics Syst. 38, 7, 729--753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Batty, M. 2009. Agent-based pedestrian modelling. http://eprints.ucl.ac.uk/237/1/paper61.pdf.Google ScholarGoogle Scholar
  8. Batty, M., Desyllas, J., and Duxbury, E. 2003. The discrete dynamics of small-scale spatial events: Agent-based models of mobility in carnivals and street parades. Int. J. Geograph. Inform. Science 17, 7, 673--697.Google ScholarGoogle ScholarCross RefCross Ref
  9. Boston Dynamics. 2009. Di-guy. http://www.diguy.com/diguy/.Google ScholarGoogle Scholar
  10. Braun, A., Bodmann, B. E. J., and Musse, S. R. 2005. Simulating virtual crowds in emergency situations. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology. 244--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Burstedde, C., Klauck, K., Schadschneider, A., and Zittartz, J. 2001. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Stat. Mechanics Its Appl. 295, 3-4, 507--525.Google ScholarGoogle ScholarCross RefCross Ref
  12. Chenney, S. 2004. Flow tiles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Crowd Dynamics Pte Ltd. 2009a. Crowd disasters. http://www.crowddynamics.com/Main/Crowddisasters.html.Google ScholarGoogle Scholar
  14. Crowd Dynamics Pte Ltd. 2009b. Crowd dynamics. http://www.crowddynamics.com/.Google ScholarGoogle Scholar
  15. de Heras Ciechomski, P., Schertenleib, S., Maim, J., and Thalmann, D. 2005. Reviving the roman odeon of aphrodisias: Dynamic animation and variety control of crowds in virtual heritage. In Proceedings of the 11th International Conference on Virtual Systems and Multimedia.Google ScholarGoogle Scholar
  16. Dechter, R. and Pearl, J. 1985. Generalized best-first search strategies and the optimality of a*. J. ACM 32, 3, 505--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Deffuant, G. 2006. Comparing extremism propagation patterns in continuous opinion models. J. Artif. Societies Social Simul. 9, 3.Google ScholarGoogle Scholar
  18. Deffuant, G., Amblard, F., Weisbuch, G., and Faure, T. 2002. How can extremism prevail? a study based on the relative agreement interaction model. J. Artif. Societies Social Simul. 5, 4.Google ScholarGoogle Scholar
  19. Fan, X., Sun, S., McNeese, M., and Yen, J. 2005. Extending recognition-primed decision model for human-agent collaboration. In Proceedings of the 4th International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS'05). 945--952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Fang, Z., Yuan, J., Wang, Y., and Lo, S. 2008. Survey of pedestrian movement and development of a crowd dynamics model. Fire Safety J. 43, 459--465.Google ScholarGoogle ScholarCross RefCross Ref
  21. Festinger, L. 1954. A theory of social comparison processes. Human Relations 7, 2, 117--140.Google ScholarGoogle ScholarCross RefCross Ref
  22. Funge, J., Tu, X., and Terzopoulos, D. 1999. Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In Proceedings of the 26th International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Galea, E. 1998. A general approach to validating evacuation models with an application to exodus. J. Fire Sciences 16, 6, 414--436.Google ScholarGoogle ScholarCross RefCross Ref
  24. Galea, E. R. and Galparsoro, J. M. P. 1993. Exodus: An evacuation model for mass transport vehicles. UK CAA Paper 93 006 ISBN 0 86039 543X. http://fseg.gre.ac.uk/exodus.Google ScholarGoogle Scholar
  25. Gilbert, N. 2007. A generic model of collectivities. http://epubs.surrey.ac.uk/cress/14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Gratch, J. and Marsella, S. 2004. A domain-independent framework for modeling emotion. J. Cognitive Syst. Resear. 5, 4, 269--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Helbing, D., Farkas, I., and Vicsek, T. 2000. Simulating dynamical features of escape panic. Letters to Nature 407, 487--490.Google ScholarGoogle Scholar
  28. Hughes, R. L. 2003. The flow of human crowds. Ann. Rev. Fluid Mechanics 35, 169--182.Google ScholarGoogle ScholarCross RefCross Ref
  29. Kaminka, G. A. and Fridman, N. 2006. A cognitive model of crowd behavior based on social comparison theory. In Proceedings of the AAAI Workshop on Cognitive Modeling and Agent-Based Social Simulation.Google ScholarGoogle Scholar
  30. Kisko, T. M., Francis, R. L., and Nobel, C. R. 1998. Evacnet4 user's guide. http://www.ise. ufl.edu/kisko/files/evacnet/EVAC4UG.HTM.Google ScholarGoogle Scholar
  31. Klein, G. 1998. Sources of Power: How People Make Decisions. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  32. Klugl, F. 2008. A validation methodology for agent-based simulations. In Proceedings of the 23rd Annual ACM Symposium on Applied Computing (SAC'08). 39--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Klugl, F. and Rindsfuser, G. 2007. Large-scale agent-based pedestrian simulation. In Lecture Notes in Computer Science, vol. 4687, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Klupfel, H. 2007. The simulation of crowds at very large events. In Traffic and Granular Flow'05. Springer, Berlin, 341--346.Google ScholarGoogle Scholar
  35. Lebbink, H. J., Witteman, C. L. M., and Meyer, J.-J. C. 2005. Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference. 2--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Lee, K. H., Choi, M. G., Hong, Q., and Lee, J. 2007. Group behavior from video: A data-driven approach to crowd simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Lerner, A., Chrysanthou, Y., and Lischinski, D. 2007. Crowds by example. Comput. Graph. Forum 26, 3, 655--664.Google ScholarGoogle ScholarCross RefCross Ref
  38. Loewenstein, G. and Lerner, J. 2003. Handbook of Affective Science. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  39. Luo, L., Zhou, S., Cai, W., Low, M. Y. H., Tian, F., Wang, Y., Xiao, X., and Chen, D. 2008. Agent-based human behavior modeling for crowd simulation. Comput. Anim. Virtual Worlds 19, 3-4, 271--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Maim, J., Haegler, S., Yersin, B., Muller, P., Thalmann, D., and Gool, L. V. 2007. Populating ancient pompeii with crowds of virtual romans. In Proceedings of the 8th International Symposium on Virtual Reality, Archeology and Cultural Heritage (VAST'07). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Massive Software. 2009. Massive. http://www.massivesoftware.com.Google ScholarGoogle Scholar
  42. Mawson, A. R. 2005. Understanding mass panic and other collective responses to threat and disaster. Psychiatry 68, 2.Google ScholarGoogle ScholarCross RefCross Ref
  43. McDonald, D., Lazarus, R., Leung, A., and Hussain, T. 2006. Interoperable human behavior models for simulations. In Proceedings of the Behavior Representation in Modeling and Simulation Conference (BRIMS).Google ScholarGoogle Scholar
  44. McKenzie, F. D., Nguyen, Q.-A. H., and Petty, M. D. 2004. Crowd federate architecture and api design. In Proceedings of the Fall Simulation Interoperability Workshop. 574--587.Google ScholarGoogle Scholar
  45. Miller, J. H. and Page, S. E. 2007. Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton University Press, Princeton, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Morini, F., Yersin, B., Maim, J., and Thalmann, D. 2007. Real-time scalable motion planning for crowds. In Proceedings of the International Conference on Cyberworlds (CyberWorlds'07). 144--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Musse, S. R. and Thalmann, D. 2001. Hierarchical model for real time simulation of virtual human crowds. IEEE Trans. Visualiz. Comput. Graph. 7, 2, 152--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Nguyen, Q.-A. H., McKenzie, F. D., and Petty, M. D. 2005. Crowd behavior cognitive model architecture design. In Proceedings of the Conference on Behavior Representation in Modeling and Simulation (BRIMS). 55--64.Google ScholarGoogle Scholar
  49. Ortony, A., Clore, G., and Collins, A. 1988. The Cognitive Structure of Emotion. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  50. Pan, X., Han, C. S., and Law, K. H. 2005. A multi-agent based simulation framework for the study of human and social behavior in egress analysis. In Proceedings of the International Conference on Computing in Civil Engineering. 12--15.Google ScholarGoogle Scholar
  51. Paris, S., Donikian, S., and Bonvalet, N. 2006. Environmental abstraction and path planning techniques for realistic crowd simulation. Computer Animat. Virtual Worlds 17, 3-4, 325--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Pelechano, N., Allbeck, J., and Badler, N. 2007. Controlling individual agents in high-density crowd simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Pelechano, N., Allbeck, J. M., and Badler, N. I. 2008. Virtual Crowds: Methods, Simulation, and Control. Morgan & Claypool. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Pelechano, N. and Badler, N. 2006. Modeling crowd and trained leader behavior during building evacuation. IEEE Comput. Graphics and Appl. 26, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Pelechano, N., Oùflbrien, K., Silverman, B., and Badler, N. 2005. Crowd simulation incorporating agent psychological models, roles and communication. In Proceedings of the 1st International Workshop on Crowd Simulation (V-CROWDS'05).Google ScholarGoogle Scholar
  56. Pettre, J., de Heras Ciechomski, P., Maim, J., Yersin, B., Laumond, J.-P., and Thalmann, D. 2006. Real-time navigating crowds: Scalable simulation and rendering. Comput. Anim. Virtual Worlds 17, 445--455. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Pettre, J., Grillon, H., and Thalmann, D. 2007. Crowds of moving objects: Navigation planning and simulation. In Proceedings of the IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  58. Petty, M. D., McKenzie, F. D., Gaskins, R. C., and Weisel, E. W. 2004. Developing a crowd federate for military simulation. In Proceedings of the Spring Simulation Interoperability Workshop (SIW). 483--493.Google ScholarGoogle Scholar
  59. Petty, M. D., McKenzie, F. D., and III, R. C. G. 2003. Requirements, psychological models, and design issues in crowd modeling for military simulation. In Proceedings of the Huntsville Simulation Conference.Google ScholarGoogle Scholar
  60. Presagis. 2009. Ai.implant. http://www.presagis.com/products/simulation/aiimplant/.Google ScholarGoogle Scholar
  61. Reynolds, C. W. 1987. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the ACM SIGGRAPH Conference. 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Salzarulo, L. 2006. A continuous opinion dynamics model based on the principle of meta-contrast. J. Artif. Societies Social Simul. 9, 1.Google ScholarGoogle Scholar
  63. Santos, G. and Aguirre, B. E. 2004. A critical review of emergency evacuation simulation models. In Proceedings of the NIST Workshop on Building Occupant Movement during Fire Emergencies. 25--50.Google ScholarGoogle Scholar
  64. Seyfried, A., Steffen, B., and Klingsch, W. 2005. The fundamental diagram of pedestrian movement revisisted. J. Stat. Mechanics: Theory Exper.Google ScholarGoogle Scholar
  65. Shao, W. and Terzopoulos, D. 2005a. Autonomous pedestrians. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation. 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Shao, W. and Terzopoulos, D. 2005b. Environmental modeling for autonomous virtual pedestrians. In Proceedings of the SAE Symposium on Digital Human Modeling for Design and Engineering. 420--433.Google ScholarGoogle Scholar
  67. Shao, W. and Terzopoulos, D. 2006. Populating reconstructed archaeological sites with autonomous virtual humans. In Proceedings of the 6th International Conference on Intelligent Virtual Agents (IVA'06). 420--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Silverman, B. G., Bharathy, G., O'Brien, K., and Cornwell, J. 2006. Human behavior models for agents in simulators and games: Part ii: Gamebot engineering with pmfserv. Presence 15, 2, 163--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Silverman, B. G., Johns, M., Cornwell, J., and O'Brien, K. 2006. Human behavior models for agents in simulators and games: Part i: Enabling science with pmfserv. Presence 15, 2, 139--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Singh, S., Kapadia, M., Faloutsos, P., and Reinman, G. 2009. Steerbench: A benchmark suite for evaluating steering behaviors. Comput. Anim. Virtual Worlds 20, 5-6, 533--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Sipser, M. 2005. Introduction to the Theory of Computation 2nd Ed. PWS Publishing Company, Boston, MA.Google ScholarGoogle Scholar
  72. Stauffer, D. 2005. Sociophysics simulations ii: Opinion dynamics. http://www.citebase.org/abstract?id=oai:arXiv.org:physics/0503115.Google ScholarGoogle Scholar
  73. Sung, M., Gleicher, M., and Chenney, S. 2004. Scalable behaviors for crowd simulation. Comput. Graph. Forum 23, 3, 519--528.Google ScholarGoogle ScholarCross RefCross Ref
  74. Ting, S. and Zhou, S. 2008. Snap: A time critical decision-making framework for mout simulations. Comput. Anim. Virtual Worlds 19, 3-4, 505--514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Treuille, A., Cooper, S., and Popovic, Z. 2006. Continuum crowds. In Proceedings of the 33rd International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'06). 1160--1168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Tu, X. and Terzopoulos, D. 1994. Artificial fishes: physics, locomotion, perception, behavior. In Proceedings of the 21st International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'94). 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Turner, J. C., Hogg, M. A., Oakes, P. J., Reicher, S. D., and Wetherell, M. S. 1989. Rediscovering the social group: A self-categorization theory. Amer. J. Sociol. 94, 1514--1516.Google ScholarGoogle Scholar
  78. Turner, R. H. and Killian, L. M. 1987. Collective behavior. Prentice Hall, Englewood Cliffs.Google ScholarGoogle Scholar
  79. Ulicny, B. and Thalmann, D. 2001. Crowd simulation for interactive virtual environments and vr training systems. In Proceedings of the Eurographics Workshop on Animation and Simulation. 163--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Yersin, B., Maim, J., de Heras Ciechomski, P., Schertenleib, S., and Thalmann, D. 2005. Steering a virtual crowd based on a semantically augmented navigation graph. In Proceedings of the 1st International Workshop on Crowd Simulation (V-CROWDS'05). 169--178.Google ScholarGoogle Scholar
  81. Yersin, B., Pettre, J., and Thalmann, D. 2009. Crowd patches: Populating large-scale virtual environments for real-time applications. In Proceedings of the ACM/SIGRAPH Symposium on Interactive 3D graphics and games (I3D'09). 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Crowd modeling and simulation technologies

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Modeling and Computer Simulation
            ACM Transactions on Modeling and Computer Simulation  Volume 20, Issue 4
            October 2010
            155 pages
            ISSN:1049-3301
            EISSN:1558-1195
            DOI:10.1145/1842722
            Issue’s Table of Contents

            Copyright © 2010 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 5 November 2010
            • Accepted: 1 November 2009
            • Revised: 1 August 2009
            • Received: 1 February 2009
            Published in tomacs Volume 20, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader