skip to main content
10.1145/1833349.1778835acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Manifold bootstrapping for SVBRDF capture

Published:26 July 2010Publication History

ABSTRACT

Manifold bootstrapping is a new method for data-driven modeling of real-world, spatially-varying reflectance, based on the idea that reflectance over a given material sample forms a low-dimensional manifold. It provides a high-resolution result in both the spatial and angular domains by decomposing reflectance measurement into two lower-dimensional phases. The first acquires representatives of high angular dimension but sampled sparsely over the surface, while the second acquires keys of low angular dimension but sampled densely over the surface.

We develop a hand-held, high-speed BRDF capturing device for phase one measurements. A condenser-based optical setup collects a dense hemisphere of rays emanating from a single point on the target sample as it is manually scanned over it, yielding 10 BRDF point measurements per second. Lighting directions from 6 LEDs are applied at each measurement; these are amplified to a full 4D BRDF using the general (NDF-tabulated) microfacet model. The second phase captures N=20-200 images of the entire sample from a fixed view and lit by a varying area source. We show that the resulting N-dimensional keys capture much of the distance information in the original BRDF space, so that they effectively discriminate among representatives, though they lack sufficient angular detail to reconstruct the SVBRDF by themselves. At each surface position, a local linear combination of a small number of neighboring representatives is computed to match each key, yielding a high-resolution SVBRDF. A quick capture session (10-20 minutes) on simple devices yields results showing sharp and anisotropic specularity and rich spatial detail.

Skip Supplemental Material Section

Supplemental Material

tp005-10.mp4

mp4

36.3 MB

References

  1. Alldrin, N., Zickler, T. E., and Kriegman, D. 2008. Photometric stereo with non-parametric and spatially-varying reflectance. In CVPR, 1--8.Google ScholarGoogle Scholar
  2. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Siggraph 2000, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dana, K. J., Nayar, S. K., van Ginneken, B., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics 18, 1, 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dana, K. J. 2001. BRDF/BTF measurement device. In Proceedings of eighth IEEE international conference on computer vision (ICCV), vol. 2, 460--466.Google ScholarGoogle ScholarCross RefCross Ref
  6. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH, 369--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. SIGGRAPH 2000, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Debevec, P., Tchou, C., Gardner, A., Hawkins, T., Poullis, C., Stumpfel, J., Jones, A., Yun, N., Einarsson, P., Lundgren, T., Fajardo, M., and Martinez, P. 2004. Estimating surface reflectance properties of a complex scene under captured natural illumination. Technical report ICT-TR-06, University of Southern California Institute for Creative Technologies Graphics Laboratory.Google ScholarGoogle Scholar
  9. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: exploiting data-sparseness in reflectance fields. In Eurographics Workshop/ Symposium on Rendering, Eurographics Association, Nicosia, Cyprus, 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In ICCV, I: 341--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22, 3, 741--748. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transaction on Graphics 22, 2 (Apr.), 234--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lu, R., Koenderink, J. J., and Kappers, A. M. L. 1998. Optical properties bidirectional reflectance distribution functions of velvet. Applied Optics 37, 25 (Sept.), 5974--5984.Google ScholarGoogle ScholarCross RefCross Ref
  16. Marschner, S., Westin, S., Lafortune, E., Torrance, K., and Greenberg, D. 1999. Image-based BRDF measurement including human skin. In 10th Eurographics Rendering Workshop. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3, 759--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. Efficient isotropic BRDF measurement. In EGRW '03: Proceedings of the 14th Eurographics Workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 241--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. McAllister, D. K., Lastra, A. A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In Proceedings of the 17th Eurographics/SIGGRAPH Workshop on Graphics Hardware (EGGH-02), ACM Press, New York, S. N. Spencer, Ed., 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Moshe, B.-E., Wang, J., Bennett, W., Li, X., and Ma, L. 2008. An LED-only BRDF measurement device. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1--8.Google ScholarGoogle Scholar
  21. Mount, D., and Arya, S. 1997. Ann: A library for approximate nearest neighbor searching. In CGC 2nd Annual Fall Workshop on Computational Geometry.Google ScholarGoogle Scholar
  22. Mukaigawa, Y., sumino, K., and yagi, Y. 2007. High-speed measurement of BRDF using an ellipsoidal mirror and a projector. In Proc. of Asian Conference on Computer Vision (ACCV2007), LNCS-4844, 246--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Muller, G., Meseth, J., Sattler, M., Sarlette, R., and Klein, R. 2005. Acquisition, synthesis, and rendering of bidirectional texture functions. Computer Graphics Forum 24, 1, 83--109.Google ScholarGoogle ScholarCross RefCross Ref
  24. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. Eurographics Symposium on Rendering 2005, 117C226.Google ScholarGoogle Scholar
  25. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US).Google ScholarGoogle Scholar
  26. Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. In Science, 2323--2326.Google ScholarGoogle Scholar
  27. Schuster, W. 2001. Harmonische interpolation. In Math. Semesterber, Springer-Verlag, 1--27.Google ScholarGoogle Scholar
  28. Shirley, P., and Chiu, K. 1997. A low distortion map between disk and square. J. Graph. Tools 2, 3, 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wang, J., Dong, Y., Tong, X., Lin, Z., and Guo, B. 2009. Kernel nyström method for light transport. ACM Trans. Graph. 28, 3, 29:1--29:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Weistroffer, R. P., Walcott, K. R., Humphreys, G., and Lawrence, J. 2007. Efficient basis decomposition for scattered reflectance data. In EGSR07: Proceedings of the Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Weyrich, T. 2006. Acquisition of human faces using a measurement-based skin reflectance model. PhD thesis, Department of Computer Science, ETH Zurich.Google ScholarGoogle Scholar
  33. Zhang, Z. 2000. A flexible new technique for camera calibration. In Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zickler, T., Enrique, S., Ramamoorthi, R., and Belhumeur, P. 2005. Reflectance sharing: image-based rendering from a sparse set of images. In Eurographics Symposium on Rendering, Eurographics Association, Konstanz, Germany, K. Bala and P. Dutré, Eds., 253--264. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Manifold bootstrapping for SVBRDF capture

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SIGGRAPH '10: ACM SIGGRAPH 2010 papers
              July 2010
              984 pages
              ISBN:9781450302104
              DOI:10.1145/1833349

              Copyright © 2010 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 26 July 2010

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              SIGGRAPH '10 Paper Acceptance Rate103of390submissions,26%Overall Acceptance Rate1,822of8,601submissions,21%

              Upcoming Conference

              SIGGRAPH '24

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader