skip to main content
10.1145/167088.167197acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article
Free Access

Cryptographic hardness of distribution-specific learning

Published:01 June 1993Publication History
First page image

References

  1. 1.W. Alexi, B. Chor, O. Goldreich, and C. Schnorr. RSA and Rabin functions:certain parts are as hard as the whole. SIAM J. on Com#uting, 17:194-209, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. 2.D. Angluin. Lecture notes on the complexity of some problems in number theory. TeclmJcal report, Yale University, Report No. TR-243, 1982.Google ScholarGoogle Scholar
  3. 3.D. Angluin. Leaxning regular sets from queries and counterexaxnples. Information and Computation, 75:87--106, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. 4.D. Angluin and M. Kharitonov. When Won't Membership Queries Help? In Proc. o} the 23d STOC, pages 444--454. ACM, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. 5.P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related problems. SIAM J. on Comporting, 15:994-1003, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. 6.A. Blum. Separating Distribution-Free and Mistake- Bounded Learning Models over the Boolean Domain In Proc. of the 31st FOGS, pages 211-218. IEEE, 1990.Google ScholarGoogle Scholar
  7. 7.L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator. SIAM J. Comput., 15:364-383, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8.J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions. JCSS, 18:143-154, 1979.Google ScholarGoogle Scholar
  9. 9.A. K. Chandra, L. J. Stockmeyer, U. Vishkin. Constant depth reducibility. SIAM J. on Compuling, 13:423-432, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  10. 10.M. Furst, J. Jackson, and S. Smith. Improved learning of AC~ functions. In Proc. o} the dth COLT, pages 317-325. Morgan Kaufmann, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. 11.O. Goldreich, S. Goldwasser, and S. Micali. How to constJruct random functions. J. A CM, 33:792-807, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. 12.O. Goldreich and L. Levin. A hard-core predicate fox' all one-way functions. In Proc. of the 21st STOC, pages 25--32. ACM, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13.J. Hastad. Computational limitations }or small depth circuits. MIT Press, 1986. Ph.D. thesis.Google ScholarGoogle Scholar
  14. 14.R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random Number Generation from Any One-way Function. In Proc. 21st STOC, pages 12-24. ACM, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15.M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. In Proc. 21st STOC, pages 433-444. ACM, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. 16.M. Kharitonov. Cryptographic Lower Bounds for Learnability of Boolean Functions on the Uniform Distribution In Proc. o} the 5th COLT. Morgan Kaufmann, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17.W. LeVeque. Fundamentals of Number Theory. Addison- Wesley, 1977.Google ScholarGoogle Scholar
  18. 18.L. Levin. Manuscript.Google ScholarGoogle Scholar
  19. 19.N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability. In Proc. of the 30th FOGS, pages 574-579. IEEE, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20.M. Luby. Pseudo-randomness and Applications. Princeton University Press, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21.Y. Maxtsour. An O(nl~g log n) Learning Algorithm for DNF under the uniform distribution. In Proc. of the 5th COLT. Morgan Kaufmarm, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. 22.L. Pitt and M. Warmuth. Prediction-preserving reducibility. JCSS, 41:430-467, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. 23.J. Reif. On threshold circuits and polynomial computation. In Proc. of the 2d IEEE Structures, pages 118-123. IEEE, 1987.Google ScholarGoogle Scholar
  24. 24.R. E. Schapire. The strength of weak learnability. In Proc. of the 30th FOGS, pages 28-33. IEEE, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25.L. (3. Valiant. A theory of the learnable. C. A CM, 27:1134- 1142, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. 26.U. V. Vazirani and V. V. Vaziraxti. Efficient and seeare pseudo-random number generation, in Proc. of ghe 25#h FOGS, pages 458-463. IEEE, 1984.Google ScholarGoogle Scholar

Index Terms

  1. Cryptographic hardness of distribution-specific learning

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            STOC '93: Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing
            June 1993
            812 pages
            ISBN:0897915917
            DOI:10.1145/167088

            Copyright © 1993 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 June 1993

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate1,469of4,586submissions,32%

            Upcoming Conference

            STOC '24
            56th Annual ACM Symposium on Theory of Computing (STOC 2024)
            June 24 - 28, 2024
            Vancouver , BC , Canada

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader