skip to main content
10.1145/1643928.1643954acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article

A particle-based method for viscoelastic fluids animation

Authors Info & Claims
Published:18 November 2009Publication History

ABSTRACT

We present a particle-based method for viscoelastic fluids simulation. In the method, based on the traditional Navier-Stokes equation, an additional elastic stress term is introduced to achieve viscoelastic flow behaviors, which have both fluid and solid features. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics, large flow deformation can be handled more easily and naturally. And also, by changing the viscosity and elastic stress coefficient of the particles according to the temperature variation, the melting and flowing phenomena, such as lava flow and wax melting, are achieved. The temperature evolution is determined with the heat diffusion equation. The method is effective and efficient, and has good controllability. Different kinds of viscoelastic fluid behaviors can be obtained easily by adjusting the very few experimental parameters.

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baxter, W., Liu, Y., and Lin, M. C. 2004. A viscous paint model for interactive applications. Comput. Animat. Virtual Worlds 15, 3--4, 433--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baxter, W., Wendt, J., and Lin, M. C. 2004. Impasto: a realistic, interactive model for paint. In NPAR '04: Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering, 45--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Carlson, M., Mucha, P. J., Van Horn, III, R. B., and Turk, G. 2002. Melting and flowing. In SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, New York, NY, USA, 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, New York, NY, USA, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Eurographics Workshop on Computer Animation and Simulation (EGCAS), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Desbrun, M., and Gascuel, M.-P. 1995. Animating soft substances with implicit surfaces. In SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 287--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fält, H., and Roble, D. 2003. Fluids with extreme viscosity. In SIGGRAPH '03: ACM SIGGRAPH 2003 Sketches&Applications, ACM, New York, NY, USA, 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Harada, T., Koshizuka, S., and Kawaguchi, Y. 2007. Smoothed Particle Hydrodynamics on GPUs. 63--70.Google ScholarGoogle Scholar
  12. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutre, P., and Gross, M. 2005. A unified lagrangian approach to solid-fluid animation. In Point-Based Graphics, 2005. Eurographics/IEEE VGTC Symposium Proceedings, 125--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., and Lin, M. 2007. Texturing fluids. IEEE Transactions on Visualization and Computer Graphics 13, 5, 939--952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lenaerts, T., and Dutré, P. 2009. Mixing fluids and granular materials. Computer Graphics Forum 28, 2, 213--218.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lenaerts, T., Adams, B., and Dutré, P. 2008. Porous flow in particle-based fluid simulations. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Losasso, F., Irving, G., and Guendelman, E. 2006. Melting and burning solids into liquids and gases. IEEE Transactions on Visualization and Computer Graphics 12, 3, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mao, H., and Yang, Y. 2005. A particle-based model for non-newtonian fluid animation. Tech. rep., Technical report TR05--21, Department of Computing Science, University of Alberta.Google ScholarGoogle Scholar
  21. Mao, H., and Yang, Y.-H. 2006. Particle-based immiscible fluid-fluid collision. In GI '06: Proceedings of Graphics Interface 2006, Canadian Information Processing Society, Toronto, Ont., Canada, Canada, 49--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Miller, G., and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Computers and Graphics 13, 3, 305--309.Google ScholarGoogle ScholarCross RefCross Ref
  23. Monaghan, J. J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8, 1703--1759.Google ScholarGoogle ScholarCross RefCross Ref
  24. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Narain, R., Kwatra, V., Lee, H., Kim, T., Carlson, M., and Lin, M. 2007. Feature-guided dynamic texture synthesis on continuous flows. In Proceedings of Eurographics Symposium on Rendering 2007.Google ScholarGoogle Scholar
  27. Nixon, D., and Lobb, R. 2002. A fluid-based soft-object model. IEEE Computer Graphics and Applications 22, 4, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2007. Particle-based non-newtonian fluid animation for melting objects. 78--85.Google ScholarGoogle Scholar
  29. Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2009. Particle-based viscoplastic fluid/solid simulation. Computer-Aided Design 41, 4, 306--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Transactions on Graphics 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Solenthaler, B., Schlafli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Steele, K., Cline, D., Egbert, P., and Dinerstein, J. 2004. Modeling and rendering viscous liquids. Computer Animation and Virtual Worlds 15, 34, 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stora, D., Agliati, P.-O., paule Cani, M., Neyret, F., and dominique Gascuel, J. 1999. Animating lava flows. In Graphics Interface, 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tamura, N., Nakaguchi, T., Tsumura, N., and Miyake, Y. 2007. Spring-bead animation of viscoelastic materials. IEEE Computer Graphics and Applications 27, 6, 87--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Terzopoulos, D., Platt, J., and Fleischer, K. 1991. Heating and melting deformable models. The Journal of Visualization and Computer Animation 2, 2.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wei, X., Li, W., and Kaufman, A. 2003. Melting and flowing of viscous volumes. In CASA '03: Proceedings of the 16th International Conference on Computer Animation and Social Agents (CASA 2003), IEEE Computer Society, Washington, DC, USA, 54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wicke, M., Hatt, P., Pauly, M., Müller, M., and Gross, M. 2006. Versatile virtual materials using implicit connectivity. In Proceedings of Eurographics Symposium on Point-Based Graphics, 137--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Witawat Rungjiratananon, Zoltan Szego, Y. K., and Nishita, T. 2008. Real-time animation of sand-water interaction. Computer Graphics Forum 27, 7, 1887--1893.Google ScholarGoogle ScholarCross RefCross Ref
  40. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhao, Y., Wang, L., Qiu, F., Kaufman, A., and Mueller, K. 2006. Melting and flowing in multiphase environment. Computers&Graphics 30, 4, 519--528.Google ScholarGoogle Scholar

Index Terms

  1. A particle-based method for viscoelastic fluids animation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            VRST '09: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology
            November 2009
            277 pages
            ISBN:9781605588698
            DOI:10.1145/1643928

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 18 November 2009

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate66of254submissions,26%

            Upcoming Conference

            VRST '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader