skip to main content
research-article

3D polyomino puzzle

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

This paper presents a computer-aided geometric design approach to realize a new genre of 3D puzzle, namely the 3D Polyomino puzzle. We base our puzzle pieces on the family of 2D shapes known as polyominoes in recreational mathematics, and construct the 3D puzzle model by covering its geometry with polyominolike shapes. We first apply quad-based surface parametrization to the input solid, and tile the parametrized surface with polyominoes. Then, we construct a nonintersecting offset surface inside the input solid and shape the puzzle pieces to fit inside a thick shell volume. Finally, we develop a family of associated techniques for precisely constructing the geometry of individual puzzle pieces, including the ring-based ordering scheme, the motion space analysis technique, and the tab and blank construction method. The final completed puzzle model is guaranteed to be not only buildable, but also interlocking and maintainable.

References

  1. Alexander, H. 1975. The computer plotter and the 17 ornamental design types. In SIGGRAPH 1975, 160--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Boier-Martin, I., Rushmeier, H., and Jin, J. 2004. Parameterization of triangle meshes over quadrilateral domains. In Proc. of Eurographics/ACM SIGGRAPH symp. on Geom. proc., 193--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Buss, S. R., and Fillmore, J. P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Tran. on Graphics 20, 2, 95--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Clarenz, U., Litke, N., and Rumpf, M. 2004. Axioms and variational problems in surface parameterization. Computer Aided Geometric Design 21, 8, 727--749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. ACM Tran. on Graphics (Proc. of SIGGRAPH) 25, 3, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. In Proc. of ACM SIGGRAPH 95, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Floater, M. S., and Hormann, K. 2004. Surface parameterization: a tutorial and survey. In Advances in Multiresolution for Geometric Modelling, Springer, N. A. Dodgson, M. S. Floater, and M. A. Sabin, Eds., 259--284.Google ScholarGoogle Scholar
  8. Gardner, M. 1957. Mathematical games: About the remarkable similarity between the icosian game and the towers of Hanoi. Scientific American 196, 150--156.Google ScholarGoogle ScholarCross RefCross Ref
  9. Golomb, S. W. 1954. Checkerboards and Polyominoes. The American Mathematical Monthly 61, 10 (Dec), 287--294.Google ScholarGoogle ScholarCross RefCross Ref
  10. Golomb, S. W. 1994. Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton University Press. Revised edition.Google ScholarGoogle ScholarCross RefCross Ref
  11. Kaplan, C. S., and Salesin, D. H. 2000. Escherization. In Proc. of ACM SIGGRAPH 2000, 499--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kaplan, C. S. 2007. Semiregular patterns on surfaces. In SIGGRAPH '07: ACM SIGGRAPH 2007 Sketches, 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Massarwi, F., Gotsman, C., and Elber, G. 2007. Papercraft models using generalized cylinders. In 5th Pacific Conf. on Comp. Graphics and App., 148--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. ACM Tran. on Graphics (Proc. of SIGGRAPH) 23, 3, 259--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Tran. on Graphics (Proc. SIGGRAPH) 26, 3. Article 45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Tran. on Graphics (Proc. SIGGRAPH) 26, 3. Article 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Peng, J., Kristjansson, D., and Zorin, D. 2004. Interactive modeling of topologically complex geometric detail. ACM Tran. on Graphics (Proc. of SIGGRAPH) 23, 3, 635--643. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Putter, G., 1998. Gerard's universal polyomino solver 1.4. http://www.xs4all.nl/~gp/PolyominoSolver/Polyomino.html.Google ScholarGoogle Scholar
  19. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Tran. on Graphics 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shatz, I., Tal, A., and Leifman, G. 2006. Paper craft models from meshes. Visual Computer 22, 9, 825--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Tarini, M., Hormann, K., Cignoni, P., and Montani, C. 2004. Polycube-maps. ACM Tran. on Graphics (Proc. of SIGGRAPH) 23, 3, 853--860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. of Eurographics symp. on geom. proc., 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Tran. on Graphics (Proc. of SIGGRAPH) 26, 3. Article 32. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. 3D polyomino puzzle

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 28, Issue 5
          December 2009
          646 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1618452
          Issue’s Table of Contents

          Copyright © 2009 ACM

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 December 2009
          Published in tog Volume 28, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader