skip to main content
10.5555/1613715.1613831dlproceedingsArticle/Chapter ViewAbstractPublication PagesemnlpConference Proceedingsconference-collections
research-article
Free Access

A structured vector space model for word meaning in context

Published:25 October 2008Publication History

ABSTRACT

We address the task of computing vector space representations for the meaning of word occurrences, which can vary widely according to context. This task is a crucial step towards a robust, vector-based compositional account of sentence meaning. We argue that existing models for this task do not take syntactic structure sufficiently into account.

We present a novel structured vector space model that addresses these issues by incorporating the selectional preferences for words' argument positions. This makes it possible to integrate syntax into the computation of word meaning in context. In addition, the model performs at and above the state of the art for modeling the contextual adequacy of paraphrases.

References

  1. C. Brockmann, M. Lapata. 2003. Evaluating and combining approaches to selectional preference acquisition. In Proceedings of EACL, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. Dagan, O. Glickman, B. Magnini. 2006. The PASCAL Recognising Textual Entailment Challenge. In Machine Learning Challenges, Lecture Notes in Computer Science, 177--190. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. Erk. 2007. A simple, similarity-based model for selectional preferences. In Proceedings of ACL, 216--223.Google ScholarGoogle Scholar
  4. T. Ferretti, C. Gagné, K. McRae. 2003. Thematic role focusing by participle inflections: evidence form conceptual combination. Journal of Experimental Psychology, 29(1):118--127.Google ScholarGoogle Scholar
  5. D. Gildea, D. Jurafsky. 2002. Automatic labeling of semantic roles. Computational Linguistics, 28(3):245--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Hindle, M. Rooth. 1993. Structural ambiguity and lexical relations. Computational Linguistics, 19(1):103--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Jones, D. Mewhort. 2007. Representing word meaning and order information in a composite holographic lexicon. Psychological review, 114:1--37.Google ScholarGoogle Scholar
  8. J. J. Katz, J. A. Fodor. 1964. The structure of a semantic theory. In The Structure of Language. Prentice-Hall.Google ScholarGoogle Scholar
  9. A. Kilgarriff. 1997. I don't believe in word senses. Computers and the Humanities, 31(2):91--113.Google ScholarGoogle ScholarCross RefCross Ref
  10. W. Kintsch. 2001. Predication. Cognitive Science, 25:173--202.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Landauer, S. Dumais. 1997. A solution to Platos problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2):211--240.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. Lin. 1993. Principle-based parsing without overgeneration. In Proceedings of ACL, 112--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of COLING-ACL, 768--774. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Lund, C. Burgess. 1996. Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, and Computers, 28:203--208.Google ScholarGoogle ScholarCross RefCross Ref
  15. C. D. Manning, P. Raghavan, H. Schütze. 2008. Introduction to Information Retrieval. CUP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. McCarthy, J. Carroll. 2003. Disambiguating nouns, verbs, and adjectives using automatically acquired selectional preferences. Computational Linguistics, 29(4):639--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. McCarthy, R. Navigli. 2007. SemEval-2007 Task 10: English Lexical Substitution Task. In Proceedings of SemEval, 48--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. McDonald, C. Brew. 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of ACL, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. McDonald, M. Ramscar. 2001. Testing the distributional hypothesis: The influence of context on judgements of semantic similarity. In Proceedings of CogSci, 611--616.Google ScholarGoogle Scholar
  20. K. McRae, M. Spivey-Knowlton, M. Tanenhaus. 1998. Modeling the influence of thematic fit (and other constraints) in on-line sentence comprehension. Journal of Memory and Language, 38:283--312.Google ScholarGoogle ScholarCross RefCross Ref
  21. K. McRae, M. Hare, J. Elman, T. Ferretti. 2005. A basis for generating expectancies for verbs from nouns. Memory and Cognition, 33(7):1174--1184.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Mitchell, M. Lapata. 2008. Vector-based models of semantic composition. In Proceedings of ACL, 236--244.Google ScholarGoogle Scholar
  23. A. Moschitti, S. Quarteroni. 2008. Kernels on linguistic structures for answer extraction. In Proceedings of ACL, 113--116, Columbus, OH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Narayanan, D. Jurafsky. 2002. A Bayesian model predicts human parse preference and reading time in sentence processing. In Proceedings of NIPS, 59--65.Google ScholarGoogle Scholar
  25. S. Padó, M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. U. Padó, F. Keller, M. W. Crocker. 2006. Combining syntax and thematic fit in a probabilistic model of sentence processing. In Proceedings of CogSci, 657--662.Google ScholarGoogle Scholar
  27. S. Padó, U. Padó, K. Erk. 2007. Flexible, corpus-based modelling of human plausibility judgements. In Proceedings of EMNLP/CoNLL, 400--409.Google ScholarGoogle Scholar
  28. P. Resnik. 1996. Selectional constraints: An information-theoretic model and its computational realization. Cognition, 61:127--159.Google ScholarGoogle ScholarCross RefCross Ref
  29. G. Salton, A. Wang, C. Yang. 1975. A vector-space model for information retrieval. Journal of the American Society for Information Science, 18:613--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Schütze. 1998. Automatic word sense discrimination. Computational Linguistics, 24(1):97--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Sharoff. 2006. Open-source corpora: Using the net to fish for linguistic data. International Journal of Corpus Linguistics, 11(4):435--462.Google ScholarGoogle ScholarCross RefCross Ref
  32. P. Smolensky. 1990. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46:159--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. I. Szpektor, I. Dagan, R. Bar-Haim, J. Goldberger. 2008. Contextual preferences. In Proceedings of ACL, 683--691, Columbus, OH.Google ScholarGoogle Scholar
  34. Y. Wilks. 1975. Preference semantics. In Formal Semantics of Natural Language. CUP.Google ScholarGoogle Scholar
  35. A. Yeh. 2000. More accurate tests for the statistical significance of result differences. In Proceeedings of COLING, 947--953. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image DL Hosted proceedings
    EMNLP '08: Proceedings of the Conference on Empirical Methods in Natural Language Processing
    October 2008
    1129 pages

    Publisher

    Association for Computational Linguistics

    United States

    Publication History

    • Published: 25 October 2008

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate73of234submissions,31%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader