skip to main content
10.5555/1602165.1602185acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
Article

Near-optimal Bayesian localization via incoherence and sparsity

Published:13 April 2009Publication History

ABSTRACT

This paper exploits recent developments in sparse approximation and compressive sensing to efficiently perform localization in a sensor network. We introduce a Bayesian framework for the localization problem and provide sparse approximations to its optimal solution. By exploiting the spatial sparsity of the posterior density, we demonstrate that the optimal solution can be computed using fast sparse approximation algorithms. We show that exploiting the signal sparsity can reduce the sensing and computational cost on the sensors, as well as the communication bandwidth. We further illustrate that the sparsity of the source locations can be exploited to decentralize the computation of the source locations and reduce the sensor communications even further. We also discuss how recent results in 1-bit compressive sensing can significantly reduce the amount of inter-sensor communications by transmitting only the intrinsic timing information. Finally, we develop a computationally efficient algorithm for bearing estimation using a network of sensors with provable guarantees.

References

  1. R. G. Baraniuk. Compressive Sensing. IEEE Signal Processing Magazine, 24(4):118-121, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  2. C. M. Bishop. Pattern recognition and machine learning. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. Boufounos and R. G. Baraniuk. One-Bit Compressive Sensing. In Conference on Information Sciences and Systems (CISS), Princeton, NJ, Mar 2008.Google ScholarGoogle Scholar
  4. E. Candes and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35(6):2313-2351, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. E. J. Candès. Compressive sampling. In Proc. International Congress of Mathematicians, volume 3, pages 1433-1452, Madrid, Spain, 2006.Google ScholarGoogle Scholar
  6. V. Cevher, M. Duarte, and R. G. Baraniuk. Distributed Target Localization via Spatial Sparsity. In European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, Aug 2008.Google ScholarGoogle Scholar
  7. V. Cevher, A. C. Gurbuz, J. H. McClellan, and R. Chellappa. Compressive wireless arrays for bearing estimation. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), number 2497-2500, Las Vegas, NV, Apr 2008.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Chen, L. Yip, J. Elson, H. Wang, D. Maniezzo, R. Hudson, K. Yao, and D. Estrin. Coherent acoustic array processing and localization on wireless sensor networks. Proceedings of the IEEE, 91(8):1154-1162, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. L. Donoho. Compressed Sensing. IEEE Trans. on Information Theory, 52(4):1289-1306, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Gilbert, M. Strauss, and J. Tropp. A tutorial on fast fourier sampling. IEEE Signal Processing Magazine, 25(2):57-66, March 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Processing, 45(3):600-616, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madden. Distributed regression: an efficient framework for modeling sensor network data. In Proc. of the Third International Symposium on Information Processing in Sensor Networks (IPSN), pages 1-10. ACM Press New York, NY, USA, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. C. Gurbuz, V. Cevher, and J. H. McClellan. A compressive beamformer. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, Nevada, Mar 30 -Apr 4 2008.Google ScholarGoogle Scholar
  14. J. Hill and D. Culler. Mica: a wireless platform for deeply embedded networks. Micro, IEEE, 22(6):12-24, Nov/Dec 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. T. Ihler. Inference in Sensor Networks: Graphical Models and Particle Methods. PhD thesis, Massachusetts Institute of Technology, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and M. Strauss. Random sampling for analog-to-information conversion of wideband signals. In IEEE Dallas Circuits and Systems Workshop, Dallas, TX, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. N. Laska, S. Kirolos, M. F. Duarte, T. Ragheb, R. G. Baraniuk, and Y. Massoud. Theory and implementation of an analog-to-information conversion using random demodulation. In Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), New Orleans, LA, May 2007. To appear.Google ScholarGoogle Scholar
  18. D. Malioutov, M. Cetin, and A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Processing, 53(8):3010-3022, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Model and M. Zibulevsky. Signal reconstruction in sensor arrays using sparse representations. Signal Processing, 86(3):624-638, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Proc. 3rd International Workshop on Inf. Processing in Sensor Networks (IPSN), pages 20-27. ACM Press New York, NY, USA, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. NÁdas, G. Pap, J. Sallai, and K. Frampton. Sensor network-based countersniper system. In Proc. of the 2nd international conference on Embedded networked sensor systems, pages 1-12. ACM New York, NY, USA, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. M. Stein. Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton, NJ, 1993.Google ScholarGoogle Scholar
  23. J. Tropp and A. C. Gilbert. Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Info. Theory, 53(12):4655-4666, Dec. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Tropp, D. Needell, and R. Vershynin. Iterative signal recovery from incomplete and inaccurate measurements. In Information Theory and Applications, San Diego, CA, Jan. 27-Feb. 1 2008.Google ScholarGoogle Scholar

Index Terms

  1. Near-optimal Bayesian localization via incoherence and sparsity

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              IPSN '09: Proceedings of the 2009 International Conference on Information Processing in Sensor Networks
              April 2009
              441 pages
              ISBN:9781424451081

              Publisher

              IEEE Computer Society

              United States

              Publication History

              • Published: 13 April 2009

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              Overall Acceptance Rate143of593submissions,24%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader