skip to main content
research-article

Stochastic formulation of SPICE-type electronic circuit simulation with polynomial chaos

Published:30 September 2008Publication History
Skip Abstract Section

Abstract

A methodology for efficient tolerance analysis of electronic circuits based on nonsampling stochastic simulation of transients is formulated, implemented, and validated. We model the stochastic behavior of all quantities that are subject to tolerance spectrally with polynomial chaos. A library of stochastic models of linear and nonlinear circuit elements is created. In analogy to the deterministic implementation of the SPICE electronic circuit simulator, the overall stochastic circuit model is obtained using nodal analysis. In the proposed case studies, we analyze the influence of device tolerance on the response of a lowpass filter, the impact of temperature variability on the output of an amplifier, and the effect of changes of the load of a diode bridge on the probability density function of the output voltage. The case studies demonstrate that the novel methodology is computationally faster than the Monte Carlo method and more accurate and flexible than the root-sum-square method. This makes the stochastic circuit simulator, referred to as PolySPICE, a compelling candidate for the tolerance study of reliability-critical electronic circuits.

References

  1. Berry, R. D. 1971. An optimum ordering of electronic circuit equations for a sparse matrix solution. IEEE Trans. Circ. Theory CT-18, 1 (Jan.), 40--50.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bierbaum, R. L., Brown, D. T., and Kerschen, T. J. 2002. Model-based reliability analysis. IEEE Trans. Reli. 51, 2, 133--140.Google ScholarGoogle ScholarCross RefCross Ref
  3. Boyd, R. R. 1999. Tolerance Analysis of Electronic Circuits Using Matlab. CRC Press, Boca Raton, FL. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chua, L. O. and Lin, P.-M. 1975. Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques. Prentice-Hall, Englewood Cliffs, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Debusschere, B. J., Najm, H. N., Pébay, P. P., Knio, O. M., Ghanem, R. G., and Le Maître, O. P. 2004. Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26, 2, 698--719. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ghanem, R. G. and Spanos, P. D. 1991. Stochastic Finite Elements: a Spectral Approach. Springer Verlag, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ghanta, P., Vrudhula, S., Panda, R., and Wang, J. 2005. Stochastic power grid analysis considering process variations. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE). Munich, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ho, C.-W., Ruehli, A. E., and Brennan, P. A. 1975. The modified nodal approach to network analysis. IEEE Trans. Circ. Syst. 22, 6, 504--509.Google ScholarGoogle ScholarCross RefCross Ref
  9. Li, Z., Lu, X., Qiu, W., Shi, W., and Walker, D. M. H. 2003. A circuit level fault model for resistive bridges. ACM Trans. Des. Auto. Electron. Syst. 8, 4 (Oct.), 546--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lucor, D., Su, C.-H., and Karniadakis, G. E. 2004. Generalized polynomial chaos and random oscillators. Inter. J. Numer. Meth. Eng. 60, 571--596.Google ScholarGoogle ScholarCross RefCross Ref
  11. Martin, D. E., Wilsey, P. A., Hoekstra, R. J., Keiter, E. R., Hutchinson, S. A., Russo, T. V., and Waters, L. J. 2002. Integrating multiple parallel simulation engines for mixed-technology parallel simulation. In Proceedings of the 35th Annual Simulation Symposium. San Diego, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Massobrio, G. and Antognetti, P. 1993. Semiconductor Device Modeling with SPICE, 2nd ed. McGraw-Hill, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Nagel, L. W. 1975. SPICE 2: A computer program to simulate semiconductor circuits. Tech. rep. ERL-M520, Electronics Research Laboratory, University of California, Berkeley, CA.Google ScholarGoogle Scholar
  14. Smith, W. M. 1996. Worst case circuit analysis—an overview (electronic parts/circuits tolerance analysis). In Proceedings of the Annual Reliability and Maintainability Symposium. Las Vegas, NV, 326--334.Google ScholarGoogle ScholarCross RefCross Ref
  15. Stoer, J. and Bulirsch, R. 1992. Introduction to Numerical Analysis, 2nd ed. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  16. Su, Q. and Strunz, K. 2005. Circuit branch modelling for stochastic analysis with Hermite polynomial chaos. Electron. Lett. 41, 21 (Oct.), 1163--1165.Google ScholarGoogle ScholarCross RefCross Ref
  17. Tang, J. 1998. Fundamentals of Analog Circuits: Problems and Solutions Manual. Tsinghua University Press, Beijing, P. R. China.Google ScholarGoogle Scholar
  18. Wan, X. and Karniadakis, G. E. 2006. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28, 3, 901--928. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Wiener, N. 1938. The homogeneous chaos. Amer. J. Math. 60, 897--936.Google ScholarGoogle ScholarCross RefCross Ref
  20. Xiu, D. and Karniadakis, G. E. 2002. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 2, 619--644. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Stochastic formulation of SPICE-type electronic circuit simulation with polynomial chaos

                    Recommendations

                    Comments

                    Login options

                    Check if you have access through your login credentials or your institution to get full access on this article.

                    Sign in

                    Full Access

                    PDF Format

                    View or Download as a PDF file.

                    PDF

                    eReader

                    View online with eReader.

                    eReader