skip to main content
research-article

Describing shapes by geometrical-topological properties of real functions

Published:15 October 2008Publication History
Skip Abstract Section

Abstract

Differential topology, and specifically Morse theory, provide a suitable setting for formalizing and solving several problems related to shape analysis. The fundamental idea behind Morse theory is that of combining the topological exploration of a shape with quantitative measurement of geometrical properties provided by a real function defined on the shape. The added value of approaches based on Morse theory is in the possibility of adopting different functions as shape descriptors according to the properties and invariants that one wishes to analyze. In this sense, Morse theory allows one to construct a general framework for shape characterization, parametrized with respect to the mapping function used, and possibly the space associated with the shape. The mapping function plays the role of a lens through which we look at the properties of the shape, and different functions provide different insights.

In the last decade, an increasing number of methods that are rooted in Morse theory and make use of properties of real-valued functions for describing shapes have been proposed in the literature. The methods proposed range from approaches which use the configuration of contours for encoding topographic surfaces to more recent work on size theory and persistent homology. All these have been developed over the years with a specific target domain and it is not trivial to systematize this work and understand the links, similarities, and differences among the different methods. Moreover, different terms have been used to denote the same mathematical constructs, which often overwhelm the understanding of the underlying common framework.

The aim of this survey is to provide a clear vision of what has been developed so far, focusing on methods that make use of theoretical frameworks that are developed for classes of real functions rather than for a single function, even if they are applied in a restricted manner. The term geometrical-topological used in the title is meant to underline that both levels of information content are relevant for the applications of shape descriptions: geometrical, or metrical, properties and attributes are crucial for characterizing specific instances of features, while topological properties are necessary to abstract and classify shapes according to invariant aspects of their geometry. The approaches surveyed will be discussed in detail, with respect to theory, computation, and application. Several properties of the shape descriptors will be analyzed and compared. We believe this is a crucial step to exploit fully the potential of such approaches in many applications, as well as to identify important areas of future research.

References

  1. Ackermann, W. 1928. Zum hilbertschen aufbau der reellen zahlen. Math. Ann. 99, 118--133.Google ScholarGoogle ScholarCross RefCross Ref
  2. Agarwal, P. K., Edelsbrunner, H., Harer, J., and Wang, Y. 2004. Extreme elevation on a 2-manifold. In SCG '04: Proceedings of the 20th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 357--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Allili, M. and Corriveau, D. 2007. Topological analysis of shapes using Morse theory. Comput. Vis. Image Understand. 105, 3, 188--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Allili, M., Corriveau, D., and Ziou, D. 2004. Morse homology descriptor for shape characterization. In ICPR2004: Proceedings of the 17th International Conference on Pattern Recognition. Vol. 4. 27--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Allili, M., Mischaikow, K., and Tannenbaum, A. 2001. Cubical homology and the topological classification of 2D and 3D imagery. In ICIP 2001: Proceedings of the IEEE International Conference on Image Processing. Vol. 2. 173--176.Google ScholarGoogle Scholar
  6. Allili, M. and Ziou, D. 2003. Computational homology approach for topology descriptors and shape representation. In ICISP'2003: Proceedings of the International Conference on Image and Signal Processing. Vol. 2. 508--516.Google ScholarGoogle Scholar
  7. Attene, M., Biasotti, S., and Spagnuolo, M. 2001. Re-meshing techniques for topological analysis. In SMI '01: Proceedings of the International Conference on Shape Modeling and Applications 2001. IEEE Computer Society Press, Los Alamitos, CA, 142--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Attene, M., Biasotti, S., and Spagnuolo, M. 2003. Shape understanding by contour-driven retiling. Vis. Comput. 19, 2-3, 127--138.Google ScholarGoogle ScholarCross RefCross Ref
  9. Aurenhammer, F. 1991. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 3, 345--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Axen, U. 1999. Computing Morse functions on triangulated manifolds. In SODA '99: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM Press, New York, NY, 850--851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Axen, U. and Edelsbrunner, H. 1998. Auditory Morse analysis of triangulated manifolds. In Mathematical Visualization, H. C. Hege and K. Polthier, Eds. Springer-Verlag, Berlin, Germany, 223--236.Google ScholarGoogle Scholar
  12. Bajaj, C. L., Gillette, A., and Goswami, S. 2007. Topology based selection and curation of level sets. In TopoInVis 2007: Proceedings of the Workshop on Topology-based Methods in Visualization 2007.Google ScholarGoogle Scholar
  13. Bajaj, C. L. and Goswami, S. 2006. Automatic fold and structural motif elucidation from 3D EM maps of macromolecules. In ICVGIP 2006: Proceedings of the 5th Indian Conference on Computer Vision, Graphics and Image Processing. 264--275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Bajaj, C. L., Pascucci, V., and Schikore, D. R. 1997. The contour spectrum. In VIS '97: Proceedings of the IEEE Visualization 1997. IEEE Computer Society Press, Los Alamitos, CA, 167--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Bajaj, C. L., Pascucci, V., and Schikore, D. R. 1998. Visualization of scalar topology for structural enhancement. In VIS '98: Proceedings of the IEEE Visualization Conference 1998. IEEE Computer Society Press, Los Alamitos, CA, 51--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Bajaj, C. L. and Schikore, D. R. 1998. Topology preserving data simplification with error bounds. Comput. Graph. 22, 1, 3--12.Google ScholarGoogle ScholarCross RefCross Ref
  17. Banchoff, T. F. 1967. Critical points and curvature for embedded polyhedra. J. Different. Geom. 1, 245--256.Google ScholarGoogle ScholarCross RefCross Ref
  18. Banchoff, T. F. 1970. Critical points and curvature for embedded polyhedral surfaces. Amer. Math. Month. 77, 475--485.Google ScholarGoogle ScholarCross RefCross Ref
  19. Bangham, J. A., Hidalgo, J. R., and Harvey, R. 1998b. Robust morphological scale-space trees. In Proceedings of the Noblesse Workshop on Non-Linear Model Based Image Analysis (Glasgow, U.K.), S. Marshall, N. Harvey, and D. Shah, Eds. 133--139.Google ScholarGoogle Scholar
  20. Bangham, J. A., Hidalgo, J. R., Harvey, R., and Cawley, G. 1998a. The segmentation of images via scale-space trees. In Proceedings of the 9th British Machine Vision Conference. 33--43.Google ScholarGoogle Scholar
  21. Baumgart, B. G. 1975. A polyhedron representation for computer vision. In Proceedings of the AFIPS National Computer Conference. Vol. 44. 589--596.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Berglund, N. and Szymczak, A. 2004. Making contour trees subdomain-aware. In Abstracts of the 16th Canadian Conference on Computational Geometry. 188--191.Google ScholarGoogle Scholar
  23. Bern, M. W., Eppstein, D., Agarwal, P. K., Amenta, N., Chew, L. P., Dey, T. K., Dobkin, D. P., Edelsbrunner, H., Grimm, C., Guibas, L. J., Harer, J., Hass, J., Hicks, A., Johnson, C. K., Lerman, G., Letscher, D., Plassmann, P. E., Sedgwick, E., Snoeyink, J., Weeks, J., Yap, C.-K., and Zorin, D. 1999. Emerging challenges in computational topology. ArXiv Computer Science e-prints, cs/9909001.Google ScholarGoogle Scholar
  24. Berretti, S., Del Bimbo, A., and Pala, P. 2006. Partitioning of 3D meshes using Reeb graphs. In ICPR '06: Proceedings of the 18th International Conference on Pattern Recognition. IEEE Computer Society Press, Los Alamitos, CA, 19--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Besl, P. and Jain, R. 1985. Three-dimensional object recognition. ACM Comput. Surv. 17, 1, 75--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Bespalov, D., Regli, W., and Shokoufandeh, A. 2003. Reeb graph based shape retrieval for CAD. In DETC'03: Proceedings of the ASME Design Engineering Technical Conferences 2003. ASME, New York, NY.Google ScholarGoogle Scholar
  27. Beucher, S. and Lantuejoul, C. 1979. Use of watersheds in contour detection. In Proceedings of the International Workshop on Image Processing: Real-Time Edge and Motion Detection/Estimation (Rennes, France).Google ScholarGoogle Scholar
  28. Biasotti, S. 2004a. Computational topology methods for shape modelling applications. Ph.D. dissertation. Università degli Studi di Genova, Genoa, Italy.Google ScholarGoogle Scholar
  29. Biasotti, S. 2004b. Reeb graph representation of surfaces with boundary. In SMI '04: Proceedings of the International Conference on Shape Modeling and Applications 2004. IEEE Computer Society Press, Los Alamitos, CA, 371--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Biasotti, S. 2005. Topological coding of surfaces with boundary using Reeb graphs. Comput. Graph. Geom. 7, 1, 31--45.Google ScholarGoogle Scholar
  31. Biasotti, S., Attali, D., Boissonnat, J.-D., Edelsbrunner, H., Elber, G., Mortara, M., di Baja, G. S., Spagnuolo, M., and Tanase, M. 2007. Skeletal structures. In Shape Analysis and Structuring, L. De Floriani and M. Spagnuolo, Eds. Springer, Berlin, Germany.Google ScholarGoogle Scholar
  32. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., and Landi, C. 2008. Multidimensional size functions for shape comparison. J. Math. Imag. Vis. 32, 2, 161--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Biasotti, S., Falcidieno, B., and Spagnuolo, M. 2000a. Extended Reeb Graphs for surface understanding and description. In DGCI 2000: Proceedings of the 9th Discrete Geometry for Computer Imagery Conference, G. Borgefors and G. S. di Baja, Eds. Lecture Notes in Computer Science, vol. 1953. Springer Verlag, Berlin, Germany, 185--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Biasotti, S., Falcidieno, B., and Spagnuolo, M. 2002. Shape abstraction using computational topology techniques. In From Geometric Modeling to Shape Modeling, U. Cugini and M. Wozny, Eds. Kluwer Academic Publishers, Dordrecht, The Netherlands, 209--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Biasotti, S., Falcidieno, B., and Spagnuolo, M. 2004. Surface shape understanding based on extended Reeb graphs. In Topological Data Structures for Surfaces: An Introduction for Geographical Information Science, S. Rana, Ed. John Wiley & Sons, New York, NY, 87--103.Google ScholarGoogle Scholar
  36. Biasotti, S., Giorgi, D., Spagnuolo, M., and Falcidieno, B. 2006a. Computing size functions for 3D models. Tech. rep. 3-2006, IMATI-CNR, Genoa, Italy.Google ScholarGoogle Scholar
  37. Biasotti, S., Giorgi, D., Spagnuolo, M., and Falcidieno, B. 2006b. Size functions for 3D shape retrieval. In SGP'06: Proceedings of the 2006 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. 239--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Biasotti, S., Marini, M., Spagnuolo, M., and Falcidieno, B. 2006c. Sub-part correspondence by structural descriptors of 3D shapes. Comput. Aid. Des. 38, 9 (Sept.), 1002--1019.Google ScholarGoogle ScholarCross RefCross Ref
  39. Biasotti, S. and Marini, S. 2005. 3D object comparison based on shape descriptors. Internat. J. Comput. Applicat. Tech. 23, 2/3/4, 57--69.Google ScholarGoogle ScholarCross RefCross Ref
  40. Biasotti, S., Marini, S., Mortara, M., Patané, G., Spagnuolo, M., and Falcidieno, B. 2003. 3D shape matching through topological structures. In Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 2886. 194--203.Google ScholarGoogle ScholarCross RefCross Ref
  41. Biasotti, S., Mortara, M., and Spagnuolo, M. 2000b. Surface compression and reconstruction using Reeb graphs and shape analysis. In SCCG 2000: Proceedings of the 16th Spring Conference on Computer Graphics. ACM Press, New York, NY, 174--185.Google ScholarGoogle Scholar
  42. Biasotti, S., Patané, G., Spagnuolo, M., and Falcidieno, B. 2007c. Analysis and comparison of real functions on triangulated surfaces, curves and surface. In Curve and Surface Fitting, A. Cohen, J.-L. Merrien, and L. L. Schumaker, Eds. Nashboro Press, Brentwood, TN, 41--50.Google ScholarGoogle Scholar
  43. Bieniek, A. and Moga, A. 1998. A connected component approach to the watershed segmentation. In Mathematical Morphology and its Application to Image and Signal Processing, H. Heijmans and J. Roerdink, Eds. Kluwer Academic Publishers, Dordrecht, The Netherlands, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Bieniek, A. and Moga, A. 2000. An efficient watershed algorithm based on connected components. Patt. Recog. 33, 907--916.Google ScholarGoogle ScholarCross RefCross Ref
  45. Boyell, R. L. and Ruston, H. 1963. Hybrid techniques for real-time radar simulation. In Proceedings of the 1963 Fall Joint Computer Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Breen, E. and Jones, R. 1996. Attribute openings, thinnings, and granulometries. Comput. Vis. Image Understand. 64, 377--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Bremer, P.-T., Edelsbrunner, H., Hamann, B., and Pascucci, V. 2003. A multi-resolution data structure for two-dimensional Morse functions. In VIS '03: Proceedings of the IEEE Visualization 2003, G. Turk, J. van Wijk, and R. Moorhead, Eds. IEEE Computer Society Press, Los Alamitos, CA, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Bremer, P.-T., Edelsbrunner, H., Hamann, B., and Pascucci, V. 2004. A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Visual. Comput. Graph. 10, 4 (July/Aug.), 385--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Bremer, P. T. and Pascucci, V. 2007. A practical approach to two-dimensional scalar topology. In Topology-Based Methods in Visualization, H. Hauser, H. Hagen, and H. Theisel, Eds. Springer, Berlin Heidelberg, Germany, 151--169.Google ScholarGoogle Scholar
  50. Bremer, P.-T., Pascucci, V., and Hamann, B. 2005. Maximizing adaptivity in hierarchical topological models. In SMI '05: Proceedings of the International Conference on Shape Modeling and Applications 2005. IEEE Computer Society Press, Los Alamitos, CA, 300--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Buchin, K., Dey, T. K., Giesen, J., and John, M. 2008. Recursive geometry of the flow complex and topology of the flow complex filtration. Computat. Geom. Theor. Appl. 40, 2, 115--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Bustos, B., Keim, D. A., Saupe, D., Schreck, T., and Vranić, D. V. 2005. Feature-based similarity search in 3D object databases. ACM Comput. Surv. 37, 4 (Dec.), 345--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Cagliari, F., Di Fabio, B., and Ferri, M. 2007. One-dimensional reduction of multidimensional persistent homology. arXiv:math.A/0702713.Google ScholarGoogle Scholar
  54. Cagliari, F., Ferri, M., and Pozzi, P. 2001a. Size functions from the categorical viewpoint. Acta Applicand. Math. 67, 225--235.Google ScholarGoogle ScholarCross RefCross Ref
  55. Cagliari, F., Landi, C., and Grasselli, L. 2001b. Presentations of Morse homology for studying shape of manifolds. Tech. rep. 10. DISMI, Università di Modena e Reggio Emilia, Modena and Reggio Emilia, Italy.Google ScholarGoogle Scholar
  56. Cairns, S. S., 1934. On the triangulation of regular loci. Ann. Math. 2nd Series 35, 3, 579--587.Google ScholarGoogle ScholarCross RefCross Ref
  57. Carlsson, G. and Zomorodian, A. 2007. The theory of multidimensional persistence. In SCG '07: Proceedings of the 23rd Annual Symposium on Computational Geometry. ACM Press, New York, NY, 184--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Carlsson, G., Zomorodian, A., Collins, A., and Guibas, L. 2004. Persistence barcodes for shapes. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM Press, New York, NY, 127--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Carlsson, G., Zomorodian, A., Collins, A., and Guibas, L. 2005. Persistence barcodes for shapes. Int. J. Shape Model. 11, 2, 149--187.Google ScholarGoogle ScholarCross RefCross Ref
  60. Carr, H. 2004. Topological manipulation of isosurfaces. Ph.D. dissertation. The University of British Columbia, Vancouver, B.C., Canada. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Carr, H. and Snoeyink, J. 2003. Path seeds and flexible isosurfaces using topology for exploratory visualization. In VISSYM '03: Proceedings of the Symposium on Data Visualisation 2003. Eurographics Association, Aire-la-Ville, Switzerland, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Carr, H. and Snoeyink, J. 2007. Representing interpolant topology for contour tree computation. In TopoInVis 2007: Workshop on Topology-Based Methods in Visualization 2007.Google ScholarGoogle Scholar
  63. Carr, H., Snoeyink, J., and Axen, U. 2000. Computing contour trees in all dimensions. In SODA '00: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM Press, New York, NY, 918--926. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Carr, H., Snoeyink, J., and Axen, U. 2003. Computing contour trees in all dimensions. Computat. Geom. Theor. Applicat. 24, 2, 75--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Carr, H., Snoeyink, J., and van de Panne, M. 2004. Simplifying flexible isosurfaces using local geometric measures. In VIS '04: Proceedings of the IEEE Visualization Conference 2004. 497--504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Cayley, A. 1859. On contour and slope lines. London, Edinburgh and Dublin Philosoph. Mag. J. Sci. XVIII, 264--268.Google ScholarGoogle ScholarCross RefCross Ref
  67. Cazals, F., Chazal, F., and Lewiner, T. 2003. Molecular shape analysis based upon the Morse-Smale complex and the Connolly function. In SCG '03: Proceedings of the 19th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 351--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Cerri, A., Biasotti, S., and Giorgi, D. 2007. k-dimensional size functions for shape description and comparison. In ICIAP 2007: Proceedings of the 14th International Conference on Image Analysis and Processing. IEEE Computer Society Press, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Cerri, A., Ferri, M., and Giorgi, D. 2005. A complete keypics experiment with size functions. In CIVR 2005: Proceedings of the International Conference on Image and Video Retrieval. Lecture Notes in Computer Science, vol. 3568. Springer, Berlin, Germany, 357--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Cerri, A., Ferri, M., and Giorgi, D. 2006. Retrieval of trademark images by means of size functions. Graph. Model. 68, 5, 451--471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Chiang, Y.-J., Lenz, T., Lu, X., and Rote, G. 2005. Simple and optimal output-sensitive construction of contour trees using monotone paths. Computat. Geom. Theor. Applicat. 30, 165--195.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Chiang, Y.-J. and Lu, X. 2003. Progressive simplification of tetrahedral meshes preserving all isosurface topologies. Comput. Graph. For. 22, 3, 493--504.Google ScholarGoogle Scholar
  73. Cohen-Steiner, D., edelsbrunner, H., and Harer, J. 2005. Stability of persistence diagrams. In SCG '05: Proceedings of the 21st Annual Symposium on Computational Geometry. ACM Press, New York, NY, 263--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. 2007a. Extending persistence using Poincaré and Lefschetz duality. Found. Computat. Math. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. 2007b. Stability of persistence diagrams. Discrete Computat. Geom. 37, 1, 103--120.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Cohen-Steiner, D., Edelsbrunner, H., and Morozov, D. 2006. Vines and vineyards by updating persistence in linear time. In SCG '06: Proceedings of the 22nd Annual Symposium on Computational Geometry. ACM Press, New York, NY, 119--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. 2003. Loops in Reeb graphs of 2-manifolds. In SCG '03: Proceedings of the 19th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 344--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Collins, A., Zomorodian, A., Carlsson, G., and Guibas, L. 2004a. A barcode shape descriptor for curve point cloud data. Comput. Graph. 28, 6, 881--894. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Collins, A., Zomorodian, A., Carlsson, G., and Guibas, L. 2004b. A barcode shape descriptor for curve point cloud data. In SPBG'04: Proceedings of the Symposium on Point-Based Graphics 2004. Eurographics Association, Aire-la-Ville, Switzerland, 181--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Cornea, N., Silver, D., and Min, P. 2005. Curve-skeleton applications. VIS '05: Proceedings of the IEEE Visualization Conference 2005, 95--102.Google ScholarGoogle Scholar
  81. Couprie, M. and Bertrand, G. 1997. Topological grayscale watershed transformation. In Vision Geometry V, Proceedings of SPIE. Vol. 3168. 136--146.Google ScholarGoogle Scholar
  82. Cox, J., Karron, D. B., and Ferdous, N. 2003. Topological zone organization of scalar volume data. J. Math. Imag. Vis. 18, 95--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. d'Amico, M. 2000. A new optimal algorithm for computing size function of shapes. In CVPRIP Algorithms III: Proceedings of the International Conference on Computer Vision, Pattern Recognition and Image Processing. 107--110.Google ScholarGoogle Scholar
  84. d'Amico, M., Ferri, M., and Stanganelli, I. 2004. Qualitative asymmetry measure for melanoma detection. In ISBI2004: Proceedings of the IEEE International Symposium on Biomedical Images (Arlington, VA). 1155--1158.Google ScholarGoogle Scholar
  85. d'Amico, M., Frosini, P., and Landi, C. 2003. Optimal matching between reduced size functions. Tech. rep. 35. DISMI, Università di Modena e Reggio Emilia, Modena and Reggio Emilia, Italy.Google ScholarGoogle Scholar
  86. d'Amico, M., Frosini, P., and Landi, C. 2005. Natural pseudo-distance and optimal matching between reduced size functions. Tech. rep. 66. DISMI, Università di Modena e Reggio Emilia, Modena and Reggio Emilia, Italy. (Acta Appl. Math. To appear.)Google ScholarGoogle Scholar
  87. d'Amico, M., Frosini, P., and Landi, C. 2006. Using matching distance in size theory: A survey. Int. J. Imag. Syst. Techn. 16, 5, 154--161.Google ScholarGoogle ScholarCross RefCross Ref
  88. Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M. M., and Puppo, E. 2003a. Morphology-driven simplification and multi-resolution modeling of terrains. In ACM-GIS 2003: Proceedings of the 11th International Symposium on Advances in Geographic Information Systems, E. Hoel and P. Rigaux, Eds. ACM Press, New York, NY, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Danovaro, E., De Floriani, L., and Mesmoudi, M. M. 2003b. Topological analysis and characterization of discrete scalar fields. In Theoretical Foundations of Computer Vision, Geometry, Morphology, and Computational Imaging, T. Asano, R. Klette, and C. Ronse, Eds. Lecture Notes in Computer Science, vol. 2616. Springer Verlag, Berlin, Germany, 386--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Danovaro, E., De Floriani, L., and Vitali, M. 2007. Multi-resolution Morse-Smale complexes for terrain modeling. In ICIAP 2007: Proceedings of the 14th International Conference on Image Analysis and Processing. IEEE Computer Society Press, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Danovaro, E., De Floriani, L., Papaleo, L., and Vitali, M. 2006. A multi-resolution representation of terrain morphology. In Geographic, Information Science, M. Raubal, H. Miller, A. Frank, and M. Goodchild, Eds. Lecture Notes in Computer Science, vol. 4197. Springer, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. de Berg, M., Cheong, O., Haverkort, H., Lim, J., and Toma, L. 2007. I/O-efficient flow modeling on fat terrains. In WADS 2007: Proceedings of the 10th International Workshop on Algorithms and Data Structures, F. Dehne, I. Munro, J.-R. Sack, and R. Tamassia, Eds. Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. de Berg, M. and van Kreveld, M. 1997. Trekking in the Alps without freezing or getting tired. Algorithmica 19, 306--323.Google ScholarGoogle ScholarCross RefCross Ref
  94. De Floriani, L., Magillo, P., and Puppo, E. 1999. Multi-resolution representation of shapes based on cell complexes. In Discrete Geometry for Computer Imagery, G. Bertrand, M. Couprie, and L. Perroton, Eds. Lecture Notes in Computer Science, vol. 1568. Springer Verlag, New York, NY, 3--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. de Leeuw, W. and van Liere, R. 1999. Collapsing flow topology using area metrics. In VIS '99: Proceedings of the IEEE Visualization 1999. IEEE Computer Society Press, Los Alamitos, CA, 349--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. de Silva, V. and Carlsson, G. 2004. Topological estimation using witness complexes. In PBG 2004: Proceedings of the Symposium on Point-Based Graphics 2004. Eurographics Association, Aire-la-Ville, Switzerland, 157--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. de Silva, V. and Ghrist, R. 2007. Coverage in sensor networks via persistent homology. Alg. Geom. Topol. 7, 339--358.Google ScholarGoogle ScholarCross RefCross Ref
  98. Del Bimbo, A. and Pala, P. 2006. Content-based retrieval of 3D models. ACM Trans. Multimed. Comput. Commun. Applicat. 2, 1, 20--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Delfinado, C. J. A. and Edelsbrunner, H. 1995. An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere. Comput. Aid. Geom. Des. 12, 771--784. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Dey, T. and Wenger, R. 2007. Stability of critical points with interval persistence. Discr. Computat. Geom. 38, 479--512.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Dey, T. K., Edelsbrunner, H., and Guha, S. 1999. Computational topology. In Advances in Discrete and Computational Geometry, B. Chazelle, J. E. Goodman, and R. Pollack, Eds. Contemporary Mathematics, vol. 223. AMS, Providence, RI, 109--143.Google ScholarGoogle Scholar
  102. Dey, T. K., Giesen, J., and Goswami, S. 2003. Shape segmentation and matching with flow discretization. In Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 2748. Springer, Berlin, Germany, 25--36.Google ScholarGoogle Scholar
  103. Dey, T. K. and Sun, J. 2006. Defining and computing curve-skeletons with medial geodesic function. In SGP'06: Proceedings of the 2006 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. 143--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. 1999. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Dibos, F., Frosini, P., and Pasquignon, D. 2004. The use of size functions for comparison of shapes through differential invariants. J. Math. Imag. Vis. 21, 107--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Donatini, P. and Frosini, P. 2004a. Lower bounds for natural pseudodistances via size functions. Arch. Inequal. Applicat. 2, 1--12.Google ScholarGoogle Scholar
  107. Donatini, P. and Frosini, P. 2004b. Natural pseudodistances between closed manifolds. For. Mathematic. 16, 5, 695--715.Google ScholarGoogle Scholar
  108. Donatini, P. and Frosini, P. 2007. Natural pseudodistances between closed surfaces. J. Europ. Math. Soc. 9, 2, 231--253.Google ScholarGoogle Scholar
  109. Donatini, P., Frosini, P., and Landi, C. 1999. Deformation energy for size functions. In EMMCVPR'99: Proceedings of the 2nd International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, E. R. Hancock and M. Pelillo, Eds. Lecture Notes in Computer Science, vol. 1654. Springer, Berlin, Germany, 44--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3 (Aug.). Proceedings SIGGRAPH 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Dryden, I. and Mardia, K. 1998. Statistical Shape Analysis. John Wiley & Sons New York, NY.Google ScholarGoogle Scholar
  112. Edelsbrunner, H., Facello, M., and Liang, J. 1998. On the definition and the construction of pockets in macromolecules. Discr. Appl. Math. 88, 1-3, 83--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Edelsbrunner, H. and Harer, J. 2002. Jacobi sets of multiple Morse functions. In Foundations in Computational Mathematics, F. Cucker, R. DeVore, P. Olver, and E. Sueli, Eds. Cambridge University Press, Cambridge, U.K. 37--57.Google ScholarGoogle Scholar
  114. Edelsbrunner, H. and Harer, J. 2007. Persistent homology—a survey. Contemp. Math. 453, 257--282.Google ScholarGoogle ScholarCross RefCross Ref
  115. Edelsbrunner, H., Harer, J., Mascarenhas, A., and Pascucci, V. 2004. Time-varying Reeb graphs for continuous space-time data. In SCG '04: Proceedings of the 20th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 366--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. 2003a. Morse-Smale complexes for piecewise linear 3-manifolds. In SCG '03: Proceedings of the 19th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 361--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Edelsbrunner, H., Harer, J., and Zomorodian, A. 2001. Hierarchical Morse complexes for piecewise linear 2-manifolds. In SCG '01: Proceedings of the 17th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 70--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Edelsbrunner, H., Harer, J., and Zomorodian, A. 2003b. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discr. Computat. Geom. 30, 87--107.Google ScholarGoogle ScholarCross RefCross Ref
  119. Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2000. Topological persistence and simplification. In IEEE Foundations of Computer Science, Proceedings of the 41st Annual Symposium. 454--463. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2002. Topological persistence and simplification. Discr. Computat. Geom. 28, 511--533.Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Edelsbrunner, H., Morozov, D., and Pascucci, V. 2006. Persistence-sensitive simplification of functions on 2-manifolds. In SCG '06: Proceedings of the 22nd Annual Symposium on Computational Geometry. ACM Press, New York, NY, 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Edelsbrunner, H. and Mücke, E. P. 1990. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 1, 66--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Ehresmann, C. and Reeb, G. 1944. Sur les champs d'éléments de contact de dimension p complètement intégrable dans une variété continuèment differentiable v<sub>n</sub>. Compt. Rend. Hebdomad. Séances l'Académ. Sci. 218, 955--957.Google ScholarGoogle Scholar
  124. Ferri, M. and Frosini, P. 2005. A proposal for image indexing: Keypics, plastic graphical metadata. In Internet Imaging VI, Proceedings of SPIE (San Jose, CA). Vol. 5670. 225--231.Google ScholarGoogle Scholar
  125. Ferri, M., Lombardini, S., and Pallotti, C. 1994. Leukocyte classification by size functions. In Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, IEEE Computer Society Press, Los Alamitos, CA, 223--229.Google ScholarGoogle Scholar
  126. Forman, R. 1998. Morse theory for cell complexes. Adv. Math. 134, 90--145.Google ScholarGoogle ScholarCross RefCross Ref
  127. Forman, R. 2002. A user's guide to discrete Morse theory. Seminaire Lotharingien de Combinatoire 48.Google ScholarGoogle Scholar
  128. Freeman, H. and Morse, S. P. 1967. On searching a contour map for a given terrain profile. J. Franklin Inst. 248, 1--25.Google ScholarGoogle ScholarCross RefCross Ref
  129. Frosini, P. 1990. A distance for similarity classes of submanifolds of a Euclidean space. Bull. Australian Math. Soc. 42, 407--416.Google ScholarGoogle ScholarCross RefCross Ref
  130. Frosini, P. 1991. Measuring shapes by size functions. In Intelligent Robots and Computer Vision X: Algorithms and Techniques, Proceedings of SPIE, D. P. Casasent, Ed. Vol. 1607. 122--133.Google ScholarGoogle Scholar
  131. Frosini, P. 1992. Discrete computation of size functions. J. Combin. Inform. System Sci. 17, 232--250.Google ScholarGoogle Scholar
  132. Frosini, P. 1996. Connections between size functions and critical points. Math. Meth. Appl. Sci. 19, 555--596.Google ScholarGoogle ScholarCross RefCross Ref
  133. Frosini, P. and Landi, C. 1997. New pseudo-distances for the size function space. In Vision Geometry VI, Proceedings of SPIE, R. A. Melter, A. Y. Wu, and L. J. Latecki, Eds. Vol. 3168. 52--60.Google ScholarGoogle Scholar
  134. Frosini, P. and Landi, C. 1999. Size theory as a topological tool for computer vision. Patt. Recog. Image Anal. 9, 596--603.Google ScholarGoogle Scholar
  135. Frosini, P. and Landi, C. 2001. Size functions and formal series. Applic. Alg. Eng. Commun. Comput. 12, 327--349.Google ScholarGoogle ScholarCross RefCross Ref
  136. Frosini, P. and Mulazzani, M. 1999. Size homotopy groups for computation of natural size distances. Bull. Belgian Math. Soc. 6, 455--464.Google ScholarGoogle ScholarCross RefCross Ref
  137. Frosini, P. and Pittore, M. 1999. New methods for reducing size graphs. Int. J. Comput. Math. 70, 505--517.Google ScholarGoogle ScholarCross RefCross Ref
  138. Fuchs, H., Kedem, Z., and Uselton, S. 1977. Optimal surface reconstruction from planar contours. Commun. ACM 20, 693--702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Fujishiro, I., Azuma, T., and Takeshima, Y. 1999. Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis. In VIS '99: Proceedings of the IEEE Visualization Conference 1999. 467--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Fujishiro, I., Takeshima, Y., Azuma, T., and Takahashi, S. 2000. Volume data mining using 3D field topology analysis. IEEE Comput. Graph. Applicat. 20, 5 (Sept./Oct.), 46--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. Gerstner, T. and Pajarola, R. 2000. Topology preserving and controlled topology simplifying multiresolution isosurface extraction. In VIS '00: Proceedings of the IEEE Visualization Conference 2000. IEEE Computer Society Press, Los Alamitos, CA, 259--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Giblin, P. and Kimia, B. 2004. A formal classification of 3D medial axis points and their local geometry. IEEE Trans. Patt. Anal. Mach. Intell. 26, 2, 238--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Giertsen, C., Halvorsen, A., and Flood, P. 1990. Graph-directed modelling from serial sections. Vis. Comput. 6, 284--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Giesen, J. and John, M. 2003. The flow complex: A data structure for geometric modeling. In SODA '03: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, 285--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Goresky, M. and MacPherson, R. 1988. Stratified Morse Theory. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  146. Gramain, A. 1971. Topologie des surfaces. Presses Universitaires de France. Paris, France.Google ScholarGoogle Scholar
  147. Grandis, M. 2003. Ordinary and directed combinatorial homotopy, applied to image analysis and concurrency. Homol. Homot. Appl. 5, 211--231.Google ScholarGoogle ScholarCross RefCross Ref
  148. Greenberg, M. and Harper, J. R. 1981. Algebraic Topology: A First Course. Addison-Wesley, Reading, MA.Google ScholarGoogle Scholar
  149. Griffiths, H. B. 1976. Surfaces. Cambridge University Press, Cambridge, U.K.Google ScholarGoogle Scholar
  150. Guibas, L. and Stolfi, J. 1985. Primitives for the manipulation of general subdivisions and computation of Voronoi diagrams. ACM Trans. Graph. 4, 2 (Apr.), 74--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.-T., and Hamann, B. 2005. Topology-based simplification for feature extraction from 3D scalar fields. In VIS '05: Proceedings of the IEEE Visualization Conference 2005. IEEE Computer Society Press, Los Alamitos, CA, 275--280.Google ScholarGoogle Scholar
  152. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.-T., and Haman, B. 2006. A topological approach to simplification of three-dimensional scalar functions. IEEE Trans. Visual. Comput. Graph. 12, 4, 474--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Halley, E. 1702. A new and correct sea chart of the whole world shewing the variations of the compass as they were found in the year M.D.CC. (Cartographic map). Mount & Page, London, U.K.Google ScholarGoogle Scholar
  154. Handouyaya, M., Ziou, D., and Wang, S. 1999. Sign language recognition using moment-based size functions. In Proceedings of the Conference on Vision Interface 99, Trois-Rivières. 210--216.Google ScholarGoogle Scholar
  155. Harrison, J. 2005. Lecture notes on chainlet geometry—new topological methods in geometric measure theory. ArXiv Mathematical Physics e-prints, math-ph/0505063.Google ScholarGoogle Scholar
  156. Helman, J. and Hesselink, L. 1989. Representation and display of vector field topology in fluid flow data sets. Comput. 27--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Hetroy, F. and Attali, D. 2003. Topological quadrangulations of closed triangulated surfaces using the Reeb graph. Graphic. Mod. 65, 1-3, 131--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In SIGGRAPH '01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, NY, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. Hirani, A. N. 2003. Discrete exterior calculus. Ph.D. dissertation. California Institute of Technology, Pasadena, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. Hirsch, M. W. 1997. Differential Topology. Springer, Berlin, Germany.Google ScholarGoogle Scholar
  161. Huang, X., Fisher, M., and Smith, D. 2003. An efficient implementation of Max Tree with linked list and Hash table. In Proceedings of the VII Digital Image Computing: Techniques and Applications (Sidney, Australia), C. Sun, H. Talbot, S. Ourselin, and T. Adriansen, Eds. 299--308.Google ScholarGoogle Scholar
  162. Itoh, T. and Koyamada, K. 1994. Isosurface extraction by using extrema graphs. In VIS '94: Proceedings of Visualization '94. IEEE Computer Society Press, Los Alamitos, CA, 77--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Itoh, T. and Koyamada, K. 1995. Automatic isosurface propagation using extrema graph and sorted boundary cell lists. IEEE Trans. Visualiz. Comput. Graph. 1, 4, 319--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. Itoh, T., Yamaguchi, Y., and Koyamada, K. 2001. Fast isosurface generation using the volume thinning algorithm. IEEE Trans. Visualiz. Comput. Graph. 7, 1, 32--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., and Ramani, K. 2005. Three-dimensional shape searching: state-of-the-art review and future trends. Comput.-Aid. Des. 37, 5, 509--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. Jones, M. W., Baerentzen, J. A., and Sramek, M. 2006. 3D distance fields: A survey of techniques and applications. IEEE Trans. Visualiz. Comput. Graph. 12, 4, 581--599. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Jones, R. 1999. Connected filtering and segmentation using component trees. Comput. Vis. Image Understand. 75, 215--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Kaczynski, T., Mischaikow, K., and Mrozek, M. 2004. Computational Homology. Applied Mathematical Sciences, vol. 157. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  169. Kanongchaiyos, P. and Shinagawa, Y. 2000. Articulated Reeb graphs for interactive skeleton animation. In Multimedia Modeling: Modeling Multimedia Information and System. World Scientific, Singapore, 451--467.Google ScholarGoogle Scholar
  170. Kelley, J. and Pitcher, E. 1947. Exact homomorphism sequences in homology theory. Ann. Math. 2nd Series. 48, 3, 682--709.Google ScholarGoogle ScholarCross RefCross Ref
  171. Kettner, L., Rossignac, J., and Snoeyink, J. 2003. The Safari interface for visualizing time-dependent volume data using iso-surfaces and contour spectra. Computat. Geom. Theor. Appl. 25, 1-2, 97--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. Klette, R. and Rosenfeld, A. 2004. Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Koenderink, J. J. 1990. Solid Shape. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Lam, L., Lee, S., and Suen, C. 1992. Thinning methodologies—a comprehensive survey. IEEE Trans. Patt. Anal. Mach. Intell. 14, 9, 869--885. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Landi, C. and Frosini, P. 2002. Size functions as complete invariants for image recognition. In Vision Geometry XI, Proceedings of SPIE, L. J. Latecki, D. M. Mount, and A. Y. Wu, Eds. Vol. 4794. 101--109.Google ScholarGoogle Scholar
  176. Laney, D., Bremer, P. T., Mascarenhas, A., Miller, P., and Pascucci, V. 2006. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Visualiz. Comput. Graph. 12, 5, 1053--1060. Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. Lazarus, F. and Verroust, A. 1999. Level set diagrams of polyhedral objects. In SMA '99: Proceedings of the 5th ACM Symposium on Solid Modeling and Applications 1999, W. Bronsvoort and D. Anderson, Eds. ACM Press, New York, NY, 130--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. Lévy, B. 2006. Laplace-Beltrami eigenfunctions: Towards an algorithm that understands geometry. In SMI '06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006. IEEE Computer Society Press, Los Alamitos, CA. 13--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Lewiner, T., Lopes, H., and Tavares, G. 2003. Towards optimality in discrete Morse theory. Exper. Math. 12, 3, 271--285.Google ScholarGoogle ScholarCross RefCross Ref
  180. Lewiner, T., Lopes, H., and Tavares, G. 2004. Applications of Forman's discrete Morse theory to topology visualization and mesh compression. IEEE Trans. Visualiz. Comput. Graph. 10, 5, 499--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. Loncaric, S. 1998. A survey of shape analysis techniques-from automata to hardware. Patt. Recog. 31, 8, 983--1001.Google ScholarGoogle ScholarCross RefCross Ref
  182. Magillo, P., Danovaro, E., De Floriani, L., Papaleo, L., and Vitali, M. 2007. Extracting terrain morphology: A new algorithm and a comparative evaluation. In Proceedings of the 2nd International Conference on Computer Graphics Theory and Applications (Barcelona, Spain).Google ScholarGoogle Scholar
  183. Mangan, A. and Whitaker, R. 1999. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Visualiz. Comput. Graph. 5, 4, 308--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. Mäntylä, M. 1988. Introduction to Solid Modeling. WH Freeman & Co. New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Marini, S., Spagnuolo, M., and Falcidieno, B. 2007. Structural shape prototypes for the automatic classification of 3D objects. IEEE Comput. Graph. Appl. 27, 4, 28--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. Mattes, J. G. and Demongeot, J. 2000. Efficient algorithms to implement the confinement tree. In DGCI 2000: Proceedings of the 9th Discrete Geometry for Computer Imagery Conference, G. Borgefors and G. S. di Baja, Eds. Lecture Notes in Computer Science, vol. 1953. Springer Verlag, Berlin, Germany, 392--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. Maxwell, J. C. 1870. On hills and dales. London, Edinburgh and Dublin Philosoph. Mag. J. Sci. 40, 269, 421--425.Google ScholarGoogle Scholar
  188. McAllister, M. 1999. A watershed algorithm for triangulated terrains. In CCCG99: Proceedings of the 11th Canadian Conference on Computational Geometry (Vancouver, BC). vol. VIII--A. 1--8.Google ScholarGoogle Scholar
  189. Meijster, A. and Roerdink, J. 1996. Computation of watersheds based on parallel graph algorithms. In Mathematical Morphology and its Application to Image Segmentation, P. Maragos, R. W. Shafer, and M. A. Butt, Eds. Kluwer, Dordrecht, The Netherlands, 305--312.Google ScholarGoogle Scholar
  190. Merrill, R. D. 1973. Representation of contours and regions for efficient computer search. Commun. ACM 16, 2, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Mesmoudi, M. and De Floriani, L. 2007. Morphology-based representations of discrete scalar fields. In GRAPP 2007: Proceedings of the International Conference on Computer Graphics Theory (Barcelona, Spain). 137--144.Google ScholarGoogle Scholar
  192. Mesmoudi, M. M., Danovaro, E., De Floriani, L., and Port, U. 2007. Surface segmentation through concentrated curvature. In ICIAP 2007: Proceedings of the 14th International Conference on Image Analysis and Processing. IEEE Computer Society Press, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. Meyer, F. 1994. Topographic distance and watershed lines. Signal Process. 38, 113--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Meyers, D., Skinner, S., and Sloan, K. 1992. Surfaces from contours. ACM Trans. Graph. 11, 228--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  195. Milnor, J. 1963. Morse Theory. Princeton University Press, Princeton, NJ.Google ScholarGoogle Scholar
  196. Milnor, J. 1965. Lectures on h-Cobordism. Princeton University Press, Princeton, NJ.Google ScholarGoogle Scholar
  197. Mizuta, S. and Matsuda, T. 2005. Description of digital images by region-based contour trees. In Proceedings of the International Conference on Image Analysis and Recognition. Lecture Notes in Computer Science, vol. 3656. Springer, Berlin, Germany, 549--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. Monasse, P. and Guichard, F. 2000. Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9, 5, 860--872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. Mortara, M. and Patané, G. 2002. Shape-covering for skeleton extraction. Int. J. Shape Model. 8, 245--252.Google ScholarGoogle ScholarCross RefCross Ref
  200. Mortara, M., Patané, G., Spagnuolo, M., Falcidieno, B., and Rossignac, J. 2004. Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38, 1, 227--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. Mortenson, M. E. 1986. Geometric Modeling. John Wiley & Sons, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. Munkres, J. 2000. Topology. Prentice Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  203. Nackman, L. 1984. Two-dimensional critical point configuration graphs. IEEE Trans. Patt. Anal. Mach. Intell. 6, 4, 442--450.Google ScholarGoogle Scholar
  204. Nackman, L. R. and Pizer, S. M. 1985. Three-dimensional shape description using the symmetric axis transform. I: Theory. IEEE Trans. Patt. Anal. Mach. Intell. 7, 2, 187--2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. Najman, L. and Couprie, M. 2003. Watershed algorithms and contrast preservation. In DGCI 2003: Proceedings of the 11th Discrete Geometry for Computer Imagery, I. Nyström, G. Sanniti di Baja, and S. Svensson, Eds. Lecture Notes in Computer Science, vol. 2886. Springer, Berlin, Germany, 62--71.Google ScholarGoogle Scholar
  206. Najman, L. and Schmitt, M. 1996. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 18, 12, 1163--1173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  207. Natarajan, V., Wang, Y., Bremer, P.-T., Pascucci, V., and Hamann, B. 2006. Segmenting molecular surfaces. Comput. Aid. Geom. Des. 23, 6, 495--509.Google ScholarGoogle ScholarDigital LibraryDigital Library
  208. Natarajan, V. J. and Pascucci, V. 2005. Volumetric data analysis using Morse-Smale complexes. In SMI '05: Proceedings of the International Conference on Shape Modeling and Applications 2005. 320--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  209. Ni, X., Garland, M., and Hart, J. C. 2004. Fair Morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23, 3, 613--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  210. Niyogi, P., Smale, S., and Weinberger, S. 2006. Finding the homology of submanifolds with high confidence from random samples. Discr. Computat. Geom. 39, 1--3, 419--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. Oliva, J. M., Perrin, M., and Coquillart., S. 1996. 3D reconstruction of complex polyhedral shapes from contours using a simplified generalised Voronoi diagram. Comput. Graph. For. 15, 307--318.Google ScholarGoogle Scholar
  212. Page, D. L. 2003. Part decomposition of 3D surfaces. Ph.D. dissertation. University of Tennessee, Knoxville, TN. Google ScholarGoogle ScholarDigital LibraryDigital Library
  213. Palis, J. and Melo, W. D. 1982. Geometric Theory of Dynamical Systems: An Introduction. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  214. Papaleo, L. 2004. Surface reconstruction: online mosaicing and modeling with uncertainty. Ph.D. dissertation. University of Genova, Genoa, Italy.Google ScholarGoogle Scholar
  215. Paraboschi, L., Biasotti, S., and Falcidieno, B. 2007. Comparing sets of 3D digital shapes through topological structures. In GbR'07: Proceedings of the 6th IARP-TC-15 Workshop on Graphbased Representations in Pattern Recognition, F. Escolano and M. Vento, Eds. Lecture Notes in Computer Science, vol. 4538. Springer, Berlin, Germany, 114--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. Pascucci, V. 2004. Topology diagrams of scalar fields in scientific visualization. In Topological Data Structures for Surfaces, S. Rana, Ed. John Wiley & Sons London, U.K., 121--129.Google ScholarGoogle Scholar
  217. Pascucci, V. and Cole-McLaughin, K. 2002. Efficient computation of the topology of the level sets. In VIS '02: Proceedings of the IEEE Visualization Conference 2002. IEEE Press, Los Alamitos, CA, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  218. Pascucci, V. and Cole-McLaughlin, K. 2003. Parallel computation of the topology of level sets. Algorithmica 38, 1, 249--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. Pascucci, V., Cole-McLaughin, K., and Scorzelli, G. 2004. Multi-resolution computation and presentation of contour trees. LLNL Tech. rep. number UCRL-PROC-208680. Lawrence Livermore National Laboratory, Livermore, CA.Google ScholarGoogle Scholar
  220. Pascucci, V., Scorzelli, G., Bremer, P.-T., and Mascarenhas, A. 2007. Robust on-line computation of Reeb graphs: Simplicity and speed. ACM Trans. Graph. 26, 3 (Aug.), 58.1--58.9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  221. Patané, G., Spagnuolo, M., and Falcidieno, B. 2004. Graph-based parameterization of triangle meshes with arbitrary genus. Comput. Graph. For. 23, 4, 783--797.Google ScholarGoogle Scholar
  222. Pavlidis, T. 1995. A review of algorithms for shape analysis. In Document Image Analysis. IEEE Computer Society Press, Los Alamitos, CA, 145--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. Peucker, T. K. and Douglas, D. H. 1975. Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Comput. Graph. Image Process. 4, 375--387.Google ScholarGoogle ScholarCross RefCross Ref
  224. Pfaltz, J. L. 1976. Surface networks. Geograph. Anal. 8, 77--93.Google ScholarGoogle ScholarCross RefCross Ref
  225. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. 1992. Numerical Recipes in C, 2nd ed. Cambridge University Press, Cambridge, U.K. Google ScholarGoogle ScholarDigital LibraryDigital Library
  226. Rana, S., Ed. 2004. Topological Data Structures for Surfaces: An Introduction for Geographical Information Science. John Wiley & Sons, London, U.K.Google ScholarGoogle Scholar
  227. Reeb, G. 1946. Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique. Compt. Rend. Hebdomad. Séances l'Académ. Sci. 222, 847--849.Google ScholarGoogle Scholar
  228. Requicha, A. 1980. Representations of rigid solids: Theory, methods and systems. ACM Comput. Surv. 12, 4, 437--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. Robins, V. 1999. Towards computing homology from finite approximations. In Proceedings of the 14th Summer Conference on General Topology and its Applications, W. Comfort, R. Heckmann, R. Kopperman, and L. Narici, Eds. Topology Proceedings, vol. 24. 503--532.Google ScholarGoogle Scholar
  230. Robins, V. 2002. Computational topology for point data: Betti numbers of &alpha;-shapes. In Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems, K. Mecke and D. Stoyan, Eds. Lecture Notes in Physics, vol. 600. Springer, Berlin, Germany, 261--274.Google ScholarGoogle Scholar
  231. Roerdink, J. and Meijster, A. 2000. The watershed transform: Definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  232. Salembier, P., Oliveras, A., and Garrido, L. 1998. Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7, 555--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  233. Schneider, B. 2005. Extraction of hierarchical surface networks from bilinear surface patches. Geograph. Anal. 37, 244--263.Google ScholarGoogle ScholarCross RefCross Ref
  234. Schneider, B. and Wood, J. 2004. Construction of metric surface networks from raster-based DEMs. In Topological Data Structures for Surfaces: An Introduction for Geographical Information Science, S. Rana, Ed. John Wiley & Sons Ltd, London, U.K., 53--70.Google ScholarGoogle Scholar
  235. Serra, J. 1983. Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando, FL. Google ScholarGoogle ScholarDigital LibraryDigital Library
  236. Shamir, A. 2006. Segmentation and shape extraction of 3D boundary meshes. In Proceedings of Eurographics STAR 2006, B. Wyvill and A. Wilkie, Eds. Eurographics Association, Aire-la-Ville, Switzerland, 137--149.Google ScholarGoogle Scholar
  237. Shattuck, D. and Leahy, R. 2001. Automated graph based analysis and correction of cortical volume topology. IEEE Trans. Med. Imag. 20, 1167--1177.Google ScholarGoogle ScholarCross RefCross Ref
  238. Shinagawa, Y. and Kunii, T. 1991. Constructing a Reeb graph automatically from cross sections. IEEE Comput. Graph. Applicat. 11, 44--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  239. Shinagawa, Y., Kunii, T. L., and Kergosien, Y. L. 1991. Surface coding based on Morse theory. IEEE Comput. Graph. Applicat. 11, 66--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  240. Siddiqi, K. and Pizer, S. M., Eds. 2007. Medial Representations: Mathematics, Algorithms and Applications. Springer, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  241. Smale, S. 1960. Morse inequalities for a dynamical system. Bull. Amer. Math. Soc. 66, 43--49.Google ScholarGoogle ScholarCross RefCross Ref
  242. Sohn, B.-S. and Bajaj, C. L. 2006. Time-varying contour topology. IEEE Trans. Visual. Comput. Graph. 12, 1, 14--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  243. Soille, P. 2004. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin, Germany, and New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  244. Spanier, E. H. 1966. Algebraic Topology. McGraw-Hill, New York, NY.Google ScholarGoogle Scholar
  245. Stanganelli, I., Brucale, A., Calori, L., Gori, R., Lovato, A., Magi, S., Kopf, B., Bacchilega, R., Rapisarda, V., Testori, A., Ascierto, P. A., Simeone, E., and Ferri, M. 2005. Computer-aided diagnosis of melanocytic lesions. Anticanc. Res. 25, 6C, 4577--4582.Google ScholarGoogle Scholar
  246. Steiner, D. and Fischer, A. 2001. Topology recognition of 3D closed freeform objects based on topological graphs. In Proceedings of the Pacific Conference on Computer Graphics and Applications, 82--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  247. Stoev, S. L. and Strasser, W. 2000. Extracting regions of interest applying a local watershed transformation. In VIS 2000: Proceedings of the IEEE Visualization Conference 2000. IEEE Computer Society Press, Los Alamitos, CA, 21--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  248. Sutton, P. and Hansen, C. D. 1999. Isosurface extraction in time-varying fields using a temporal branch-on-need tree (TBON). In VIS '99: Proceedings of the IEEE Visualization Conference 1999. 147--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  249. Szymczak, A. 2005. Subdomain aware contour trees and contour evolution in time-dependent scalar fields. In SMI '05: Proceedings of the International Conference on Shape Modeling and Applications 2005. IEEE Computer Society Press, Los Alamitos, CA, 136--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  250. Takahashi, S. 2004. Algorithms for Extracting Surface Topology from Digital Elevation Models. John Wiley & Sons Ltd, London, U.K., 31--51.Google ScholarGoogle Scholar
  251. Takahashi, S., Fujishiro, I., and Takeshima, Y. 2005. Interval volume decomposer: A topological approach to volume traversal. In Visualization and Data Analysis 2005, Proceedings of SPIE, R. F. Erbacher, K. Börner, M. Gröhn, and J. C. Roberts, Eds. Vol. 5669. 103--114.Google ScholarGoogle Scholar
  252. Takahashi, S., Ikeda, T., Shinagawa, Y., Kunii, T. L., and Ueda, M. 1995. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Comput. Graph. For. 14, 3, 181--192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. Takahashi, S., Nielson, G. M., Takeshima, Y., and Fujishiro, I. 2004a. Topological volume skeletonization using adaptive tetrahedralization. In Proceedings of Geometric Modelling and Processing 2004. 227--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  254. Takahashi, S., Takeshima, Y., and Fujishiro, I. 2004b. Topological volume skeletonization and its application to transfer function design. Graph. Mod. 66, 1, 24--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  255. Tangelder, J. and Veltkamp, R. 2004. A survey of content based 3D shape retrieval methods. In SMI '04: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2004. 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  256. Tarasov, S. P. and Vyalyi, M. N. 1998. Construction of contour trees in 3D in O(n log n) steps. In SCG '98: Proceedings of the 14th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  257. Tarjan, R. E. and von Leeuwen, J. 1984. Worst-case analysis of set union algorithms. J. 31, 2, 245--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  258. Theisel, H., Roessl, C., and Weinkau, T. 2007. Morphological representations of vector fields. In Shape Analysis and Structuring, L. De Floriani and M. Spagnuolo, Eds. Springer, Berlin, Germany.Google ScholarGoogle Scholar
  259. Thom, R. 1949. Sur une partition en cellules associée à une fonction sur une variété. Compt. Rend. Hebdomad. Séances l'Académ. Sci. 228, 973--975.Google ScholarGoogle Scholar
  260. Toriwaki, J. and Fukumura, T. 1978. Extraction of structural information from gray pictures. Comput. Graph. Image Process. 7, 30--51.Google ScholarGoogle ScholarCross RefCross Ref
  261. Tricoche, X., Scheuermann, G., and Hagen, H. 2001. Continuous topology simplification of planar vector fields. In VIS '01: Proceedings of the IEEE Visualization Conference 2001. IEEE Computer Society Press, Los Alamitos, CA, 159--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  262. Tung, T. and Schmitt, F. 2004. Augmented Reeb graphs for content-based retrieval of 3D mesh models. In SMI '04: Proceedings of the International Conference on Shape Modeling and Applications 2004. IEEE Computer Society Press, Los Alamitos, CA, 157--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  263. Tung, T. and Schmitt, F. 2005. The augmented multiresolution Reeb graph approach for content-based retrieval of 3D shapes. Int. J. Shape Modell. 11, 1 (June), 91--120.Google ScholarGoogle ScholarCross RefCross Ref
  264. Turner, M. J. 1998. Design of entropy conscious and constrained image operations using a contour tree image definition. In 2nd IMA Conference on Image Processing: Mathematical Methods, Algorithms and Applications (Sept. 22--25, 1998).Google ScholarGoogle Scholar
  265. Uras, C. and Verri, A. 1994. On the recognition of the alphabet of the sign language through size functions. In Proceedings of the 12th IAPR International Conference on Pattern Recognition. Jerusalem (Israel). Vol. II. IEEE Computer Society Press, Los Alamitos, CA, 334--338.Google ScholarGoogle Scholar
  266. Uras, C. and Verri, A. 1997. Computing size functions from edge maps. Int. J. Comput. Vis. 23, 2, 169--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  267. van Kreveld, M., van Oostrum, R., Bajaj, C. L., Pascucci, V., and Schikore, D. 1997. Contour trees and small seed sets for isosurface traversal. In SCG '97: Proceedings of the 13th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 212--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  268. van Kreveld, M., van Oostrum, R., Bajaj, C. L., Pascucci, V., and Schikore, D. 2004. Contour trees and small seed sets for isosurface generation. In Topological Data Structures for Surfaces: An Introduction for Geographical Information Science, S. Rana, Ed. John Wiley & Sons, London, U.K., 71--86.Google ScholarGoogle Scholar
  269. Vegter, G. 1997. Computational topology. In Handbook of Discrete and Computational Geometry, J. E. Goodman and J. O'Rourke, Eds. CRC Press, Boca Raton, FL, 517--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  270. Vegter, G. and Yap, C. K. 1990. Computational complexity of combinatorial surfaces. In SCG '90: Proceedings of the 6th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 102--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  271. Veltkamp, R. C. and Hagendoorn, M. 2001. State-of-the-art in shape matching. In Principles of Visual Information Retrieval, M. Lew, Ed. Springer-Verlag, Berlin, Germany, 87--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  272. Verri, A. and Uras, C. 1994. Invariant size functions. In Applications of Invariance in Computer Vision, J. L. Mundy, A. Zisserman, and D. Forsyth, Eds. Lecture Notes in Computer Science, vol. 825. Springer, Berlin, Germany, 215--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  273. Verri, A. and Uras, C. 1996. Metric-topological approach to shape representation and recognition. Image Vis. Comput. 14, 189--207.Google ScholarGoogle ScholarCross RefCross Ref
  274. Verri, A., Uras, C., Frosini, P., and Ferri, M. 1993. On the use of size functions for shape analysis. Biolog. Cybernet. 70, 99--107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  275. Verroust, A. and Lazarus, F. 2000. Extracting skeletal curves from 3D scattered data. Vis. Comput. 16, 15--25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  276. Vincent, L. and Soille, P. 1991. Watershed in digital spaces: An efficient algorithm based on immersion simulation. IEEE Trans. Patt. Anal. Mach. Intell. 13, 6, 583--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  277. Wang, Y., Agarwal, P., Brown, P., Edelsbrunner, H., and Rudolph, J. 2005. Coarse and reliable geometric alignment for protein docking. In Proceedings of the Pacific Symposium on Biocomputing 2005.Google ScholarGoogle Scholar
  278. Watson, L. T., Laffey, T. J., and Haralick, R. M. 1985. Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation. Comput. Vis. Graph. Image Process. 29, 143--167.Google ScholarGoogle ScholarCross RefCross Ref
  279. Weber, G. H., Dillard, S. E., Carr, H., Pascucci, V., and hamann, B. 2007. Topology-controlled volume rendering. IEEE Trans. Visualiz. Comput. Graph. 13, 2, 330--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  280. Weber, G. H. and Scheuermann, G. 2004. Automating transfer function design based on topology analysis. In Geometric Modeling for Scientific Visualization, G. Brunnett, B. Hamann, H. Mueller, and L. Linsen, Eds. Springer, Berlin, Germany.Google ScholarGoogle Scholar
  281. Weber, G. H., Scheuermann, G., and Hamann, B. 2003. Detecting critical regions in scalar fields. In VISSYM '03: Proceedings of the Symposium on Data Visualisation 2003, G.-P. Bonneau, S. Hahmann, and C. D. Hansen, Eds. Association for Computing Machinery, New York, NY, 85--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  282. Weber, G. H., Schueuermann, G., Hagen, H., and Hamann, B. 2002. Exploring scalar fields using critical isovalues. In VIS '02: Proceedings of the IEEE Visualization Conference 2002. IEEE Computer Society Press, Los Alamitos, CA, 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  283. Werghi, N., Xiao, Y., and Siebert, J. P. 2006. A functional-based segmentation of human body scans in arbitrary postures. IEEE Trans. Syst. Man Cybernet.—Part B: Cybernet. 36, 1, 153--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  284. Willard, S. 1970. General Topology. Addison-Wesley, Reading, MA.Google ScholarGoogle Scholar
  285. Wolf, G. W. 2004. Topographic surfaces and surface networks. In Topological Data Structures for Surfaces, S. Rana, Ed. John Wiley & Sons Ltd, London, U.K., 15--29.Google ScholarGoogle Scholar
  286. Wolter, F. 1992. Cut locus and medial axis in global shape interrogation and representation. Tech. rep. 92-2. MIT, Combridge, MA.Google ScholarGoogle Scholar
  287. Wood, Z., Hoppe, H., Desbrun, M., and Schroeder, P. 2004. Removing excess topology from isosurfaces. ACM Trans. Graph. 23, 190--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  288. Wood, Z. J., Desbrun, M., Schroeder, P., and Breen, D. 2000. Semi-regular mesh extraction from volumes. In VIS '02: Proceedings of the IEEE Visualization Conference 2002. IEEE Computer Society Press, Los Alamitos, CA, 275--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  289. Xiao, Y., Siebert, P., and Werghi, N. 2003. A discrete Reeb graph approach for the segmentation of human body scans. In 3DIM 2003: Proceedings of the 4th International Conference on 3-D Digital Imaging and Modeling. IEEE Computer Society Press, Los Alamitos, CA, 378--385.Google ScholarGoogle Scholar
  290. Yu, S., Van, M., and Snoeyink, J. 1996. Drainage queries in TINs: From local to global and back again. In Advances in GIS Research II: Proceedings of the 7th International Symposium on Spatial Data Handling. 1--14.Google ScholarGoogle Scholar
  291. Zhang, E., Mischaikow, K., and Turk, G. 2005. Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24, 1, 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  292. Zhang, X., Bajaj, C. L., and Baker, N. 2004. Fast matching of volumetric functions using multi-resolution dual contour trees. Tech. rep., Texas Institute for Computational and Applied Mathematics, Austin, TX.Google ScholarGoogle Scholar
  293. Ziou, D. and Allili, M. 2002. Generating cubical complexes from image data and computation of the Euler number. Patt. Recog. 35, 2833--2839.Google ScholarGoogle ScholarCross RefCross Ref
  294. Zomorodian, A. 2005. Topology for Computing. Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  295. Zomorodian, A. and Carlsson, G. 2004. Computing persistent homology. In SCG '04: Proceedings of the 20th Annual Symposium on Computational Geometry. ACM Press, New York, NY, 255--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  296. Zomorodian, A. and Carlsson, G. 2005. Computing persistent homology. Discr. Computat. Geom. 33, 2, 249--274.Google ScholarGoogle ScholarDigital LibraryDigital Library
  297. Zomorodian, A. and Carlsson, G. 2007. Localized homology. In SMI '07: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2007. IEEE Computer Society Press, Los Alamitos, CA, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Describing shapes by geometrical-topological properties of real functions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 40, Issue 4
        October 2008
        145 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/1391729
        Issue’s Table of Contents

        Copyright © 2008 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 October 2008
        • Accepted: 1 November 2007
        • Revised: 1 August 2007
        • Received: 1 July 2006
        Published in csur Volume 40, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader