skip to main content
research-article
Free Access

Anton, a special-purpose machine for molecular dynamics simulation

Authors Info & Claims
Published:01 July 2008Publication History
Skip Abstract Section

Abstract

The ability to perform long, accurate molecular dynamics (MD) simulations involving proteins and other biological macro-molecules could in principle provide answers to some of the most important currently outstanding questions in the fields of biology, chemistry, and medicine. A wide range of biologically interesting phenomena, however, occur over timescales on the order of a millisecond---several orders of magnitude beyond the duration of the longest current MD simulations.

We describe a massively parallel machine called Anton, which should be capable of executing millisecond-scale classical MD simulations of such biomolecular systems. The machine, which is scheduled for completion by the end of 2008, is based on 512 identical MD-specific ASICs that interact in a tightly coupled manner using a specialized highspeed communication network. Anton has been designed to use both novel parallel algorithms and special-purpose logic to dramatically accelerate those calculations that dominate the time required for a typical MD simulation. The remainder of the simulation algorithm is executed by a programmable portion of each chip that achieves a substantial degree of parallelism while preserving the flexibility necessary to accommodate anticipated advances in physical models and simulation methods.

References

  1. Adcock, S.A. and McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Review, 106:1589--1615, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bhatele, A., Kumar, S., Mei, C., Phillips, J.C., Zheng, G., and Kale, L.V. Overcoming scaling challenges in biomolecular simulations across multiple platforms, to appear in Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS 2008), Miami, FL, 2008.Google ScholarGoogle Scholar
  3. Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., and Shaw, D.E. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM//IEEE Conference on Supercomputing (SC06). Tampa, FL, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bowers, K.J., Dror, R.O., and Shaw, D.E. Zonal methods for the parallel execution of range-limited N-body problems. Journal of Computational Physics, 221(1):303--329, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fitch, B.G., Rayshubskiy, A., Eleftheriou, M., Ward, T.J.C., Giampapa, M.E., Pitman, M.C., Pitera, J.W., Swope, W.C., and Germain, R.S. Blue matter: scaling of N-body simulations to one atom per node. IBM Journal of Research and Development, 52(1/2), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fine, R.D., Dimmler, G., and Levinthal, C. FASTRUN: A special purpose, hardwired computer for molecular simulation. Proteins: Structure, Function, and Genetics, 11(4):242--253, 1991 (erratum: 14(3):421--422, 1992).Google ScholarGoogle Scholar
  7. Germain, R.S., Fitch, B., Rayshubskiy, A., Eleftheriou, M., Pitman, M.C., Suits, F., Giampapa, M., and Ward, T.J.C. Blue matter on blue gene/L: Massively parallel computation for biomolecular simulation. Proceedings of the Third IEEE/ACM/ IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES + ISSS '05), New York, NY, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(2):435--447, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  9. Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45):11225--11236, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  10. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K., NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151(1):283--312, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kollman, P.A., Dixon, R.W., Cornell, W.D., Fox, T., Chipot, C., and Pohorille, A. The development/ application of a "Minimalist" organic/ biomolecular mechanic forcefield using a combination of ab initio calculations and experimental data, in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, van Gunsteren, W.F. and Weiner, P.K. eds., Dordrecht, Netherlands:ESCOM, pp. 83--96, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  12. Kuskin, J.S., Young, C., Grossman, J.P., Batson, B., Deneroff, M.M., Dror, R.O., and Shaw, D.E. Incorporating flexibility in Anton, a specialized machine for molecular dynamics simulation. Proceedings of the 14th International Symposium on HighPerformance Computer Architecture (HPCA-14), Salt Lake City, UT, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  13. Larson, R.H., Salmon, J.K., Dror, R.O., Deneroff, M.M., Young. C., Grossman, J.P., Shan, Y., Klepeis, J.L., and Shaw, D.E. High-throughput pairwise point interactions in Anton, a specialized machine for molecular dynamics simulation. Proceedings of the 14th International Symposium on High-Performance Computer Architecture (HPCA-14), Salt Lake City, UT, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  14. Liem, S.Y., Brown, D., and Clarke, J.H.R. Molecular dynamics simulations on distributed memory machines. Computer Physics Communications, 67(2):261--267, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  15. MacKerell, A.D. Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, III, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M.J. All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18):3586--3616, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  16. Pande, V.S., Baker, I., Chapman, J., Elmer, S.P., Khaliq, S., Larson, S.M., Rhee, Y.M., Shirts, M.R., Snow, C.D., Sorin, E.J., and Zagrovic, B. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers, 68(1):91--109, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  17. Plimpton, S.J., Attaway, S., Hendrickson, B., Swegle, J., Vaughan, C., and Gardner, D. Transient dynamics simulations: Parallel algorithms for contact detection and smoothed particle hydrodynamics. Proceedings of the ACM//IEEE Conference on Supercomputing (Supercomputing '96), Pittsburgh, PA, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Shan, Y., Klepeis, J.L., Eastwood, M.P., Dror, R.O., and Shaw, D.E. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. Journal of Chemical Physics, 122:054101, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. Shaw, D.E. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. Journal of Computational Chemistry, 26(13):1318--1328, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  20. Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K., Young, C., Batson, B., Bowers, K.J., Chao, J.C., Eastwood, M.P., Gagliardo, J., Grossman, J.P., Ho, C.R., lerardi, D.J., Kolossváry, I., Klepeis, J.L., Layman, T., McLeavey, C., Moraes, M.A., Mueller, R., Priest, E.C., Shan, Y., Spengler, J., Theobald, M., Towles, B., and Wang, S.C., Anton, a special purpose machine for molecular dynamics simulation. Proceedings of the 34th Annual International Symposium on Computer Architecture (ISCA '07), San Diego, CA, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Snir, M. A Note on N-body computations with cutoffs. Theory of Computing Systems, 37:295--318, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  22. Taiji, M., Narumi, T., Ohno, Y., Futatsugi, N., Suenaga, A., Takada, N., and Konagaya, A., Protein explorer: A petaflops special-purpose computer system for molecular dynamics simulations. Proceedings of the ACM/IEEE Conference on Supercomputing (SC03), Phoenix, AZ, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Toyoda, S., Miyagawa, H., Kitamura, K., Amisaki, T., Hashimoto, E., Ikeda, H., Kusumi, A., and Miyakawa, N. Development of MD engine: High-speed accelerator with parallel processor design for molecular dynamics simulations. Journal Computational Chemistry, 20(2): 185--199, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  24. Wang, W. and Skeel, R.D. Fast evaluation of polarizableforces. Journal of Chemical Physics, 123(16):164107, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  25. Zhou, R., Harder, E., Xu, H., and Berne, B.J. Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems. Journal of Chemical Physics, 115(5): 2348--2358, 2001.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Anton, a special-purpose machine for molecular dynamics simulation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Communications of the ACM
            Communications of the ACM  Volume 51, Issue 7
            Web science
            July 2008
            100 pages
            ISSN:0001-0782
            EISSN:1557-7317
            DOI:10.1145/1364782
            Issue’s Table of Contents

            Copyright © 2008 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2008

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Popular
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format