skip to main content
research-article

Conformal equivalence of triangle meshes

Published:01 August 2008Publication History
Skip Abstract Section

Abstract

We present a new algorithm for conformal mesh parameterization. It is based on a precise notion of discrete conformal equivalence for triangle meshes which mimics the notion of conformal equivalence for smooth surfaces. The problem of finding a flat mesh that is discretely conformally equivalent to a given mesh can be solved efficiently by minimizing a convex energy function, whose Hessian turns out to be the well known cot-Laplace operator. This method can also be used to map a surface mesh to a parameter domain which is flat except for isolated cone singularities, and we show how these can be placed automatically in order to reduce the distortion of the parameterization. We present the salient features of the theory and elaborate the algorithms with a number of examples.

Skip Supplemental Material Section

Supplemental Material

a77-springborn.mov

mov

16.4 MB

References

  1. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H. 2007. PETSc Users Manual. Tech. Rep. ANL-95/11 (Revision 2.3.3), Argonne National Laboratory. http://www.mcs.anl.gov/petsc/.Google ScholarGoogle Scholar
  2. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal Flattening by Curvature Prescription and Metric Scaling. Comp. Graph. Forum 27 2, 449--458.Google ScholarGoogle ScholarCross RefCross Ref
  3. Benson, S., McInnes, L. C., Moré, J., Munson, T., and Sarich, J. 2007. TAO User Manual. Tech. Rep. ANL/MCS-TM-242 (Revision 1.9), Argonne National Laboratory. http://www.mcs.anl.gov/tao.Google ScholarGoogle Scholar
  4. Bobenko, A. I., and Springborn, B. A. 2004. Variational Principles for Circle Patterns and Koebe's Theorem. Trans. Amer. Math. Soc. 356, 2, 659--689.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bobenko, A. I., and Suris, Y. B., 2005. Discrete Differential Geometry. Consistency as Integrability. Preprint arXiv:math/0504358v1. To appear in Graduate Studies in Mathematics of the AMS.Google ScholarGoogle Scholar
  6. Bowers, P. L., and Hurdal, M. K. 2003. Planar Conformal Mappings of Piecewise Flat Surfaces. In Vis. and Math. III. Springer, 3--34.Google ScholarGoogle Scholar
  7. Chow, B., and Luo, F. 2003. Combinatorial Ricci Flows on Surfaces. J. Diff. Geom. 63, 1, 97--129.Google ScholarGoogle ScholarCross RefCross Ref
  8. Colin de Verdière, Y. 1991. Un Principe Variationnel pour les Empilements de Cercles. Invent. Math. 104, 655--669.Google ScholarGoogle ScholarCross RefCross Ref
  9. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Parameterizations of Surface Meshes. Comp. Graph. Forum 21, 3, 209--218.Google ScholarGoogle ScholarCross RefCross Ref
  10. Duffin, R. J. 1956. Basic Properties of Discrete Analytic Functions. Duke Math. J. 23, 335--363.Google ScholarGoogle ScholarCross RefCross Ref
  11. Duffin, R. 1959. Distributed and Lumped Networks. J. Math. Mech. {continued as Indiana Univ. Math. J.} 8, 793--826.Google ScholarGoogle ScholarCross RefCross Ref
  12. Erickson, J., and Whittlesey, K. 2005. Greedy Optimal Homotopy and Homology Generators. In Proc. ACM/SIAM Symp. on Disc. Alg., SIAM, 1038--1046. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Floater, M. S., and Hormann, K. 2005. Surface Parameterization: a Tutorial and Survey. In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization. Springer, 157--186.Google ScholarGoogle Scholar
  14. Gu, X., and Yau, S.-T. 2003. Global Conformal Surface Parameterization. In Proc. Symp. Geom. Proc., Eurographics, 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry Images. ACM Trans. Graph. 21, 3, 355--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jin, M., Kim, J., and Gu, X. D. 2007. Discrete Surface Ricci Flow: Theory and Applications. In Mathematics of Surfaces 2007, R. Martin, M. Sabin, and J. Winkler, Eds., Vol. 4647 of Lecture Notes in Computer Science. Springer, 209--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kälberer, F., Nieser, M., and Polthier, K. 2007. QuadCover---Surface Parameterization using Branched Coverings. Comp. Graph. Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kharevych, L., Springborn, B., and Schröder, P. 2006. Discrete Conformal Mappings via Circle Patterns. ACM Trans. Graph. 25, 2, 412--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Leibon, G. 2002. Characterizing the Delaunay Decompositions of Compact Hyperbolic Surfaces. Geom. Topol. 6, 361--391.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lewin, L. 1981. Polylogarithms and Associated Functions. North Holland.Google ScholarGoogle Scholar
  22. Luo, F. 2004. Combinatorial Yamabe Flow on Surfaces. Commun. Contemp. Math. 6, 765--780.Google ScholarGoogle ScholarCross RefCross Ref
  23. Macleod, A. J. 1996. Algorithm 757: MISCFUN, a Software Package to Compute Uncommon Special Functions. ACM Trans. Math. Softw. 22, 3, 288--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mercat, C. 2001. Discrete Riemann Surfaces and the Ising Model. Comm. in Math. Physics 218, 1, 177--216.Google ScholarGoogle ScholarCross RefCross Ref
  25. Milnor, J. 1982. Hyperbolic Geometry: The First 150 Years. Bul. Amer. Math. Soc. 6, 1, 9--24.Google ScholarGoogle ScholarCross RefCross Ref
  26. Pinkall, U., and Polthier, K. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experiment. Math. 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  27. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rivin, I. 1994. Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume. Ann. of Math. (2) 139, 553--580.Google ScholarGoogle Scholar
  29. Sheffer, A., and Hart, J. C. 2002. Seamster: Inconspicuous Low-Distortion Texture Seam Layout. In Proc. IEEE Vis., IEEE Comp. Soc., 291--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sheffer, A., Lévy, B., Mogilnitsky, M., and Bogomyakov, A. 2005. ABF++: Fast and Robust Angle Based Flattening. ACM Trans. Graph. 24, 2, 311--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh Parameterization Methods and their Applications. Found. Trends Comput. Graph. Vis. 2, 2, 105--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Springborn, B. 2005. A Unique Representation of Polyhedral Types. Centering via Möbius Transformations. Math. Z. 249, 513--517.Google ScholarGoogle ScholarCross RefCross Ref
  33. Steihaug, T. 1983. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization. SIAM J. Numer. Anal. 20, 3, 626--637.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stephenson, K. 2003. Circle Packing: A Mathematical Tale. Notices Amer. Math. Soc. 50, 11, 1376--1388.Google ScholarGoogle Scholar
  35. Stephenson, K. 2005. Introduction to Circle Packing. Cambridge University Press.Google ScholarGoogle Scholar
  36. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2007. Designing Quadrangulations with Discrete Harmonic Forms. In Proc. Symp. Geom. Proc., Eurographics, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Troyanov, M. 1986. Les Surfaces Euclidiennes à Singularités Coniques. Enseign. Math. (2) 32, 79--94.Google ScholarGoogle Scholar
  38. Yang, Y., Kim, J., Luo, F., Hu, S., and Gu, D. 2008. Optimal Surface Parameterization Using Inverse Curvature Map. IEEE Trans. Vis. Comp. Graph. (to appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zayer, R., Lévy, B., and Seidel, H.-P. 2007. Linear Angle Based Parameterization. In Proc. Symp. Geom. Proc., Eurographics, 135--141. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Conformal equivalence of triangle meshes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader