skip to main content
10.1145/1341012.1341022acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Modeling satellite image streams for change analysis

Published:07 November 2007Publication History

ABSTRACT

Fast detection of changes in environmental remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios. As satellite, transmission, and network technologies continue to improve, the real-time stream processing and delivery of geospatial data from remote sensors requires a systematic approach for change analysis and visualization in a streaming fashion. Although various approaches have been formulated to model the inherent spatial-temporal-spectral complexity of remotely sensed satellite data, there are still challenging peculiarities that demand a precise characterization in the context of environmental change detection.

In this paper, we present a formal characterization of fundamental operational aspects for the unambiguous specification of change detection and visualization queries in a streaming fashion. This goal is accomplished by defining spatially-aware temporal operators with a consistent semantics for change analysis tasks, and a practically relevant image stream processing architecture founded on a precise execution model and realized by using scientific workflows particularly targeted at collaborative scientific environments. We illustrate our approach with representative examples in land cover and wildfire detection using live data from environmental remote sensors.

References

  1. D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik. Aurora: a new model and architecture for data stream management. The VLDB Journal, 12(2):120--139, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Models and issues in data stream systems. In PODS'02, 1--16, ACM Press, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. Baumann. A database array algebra for spatio-temporal data and beyond. In NGITS'99, LNCS 1649, 76--93, Springer, 1999 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. J. Carlotto. Detection and analysis of change in remotely sensed imagery with application to wide area surveillance. IEEE Transactions on Image Processing, 6(1):189--202, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M. A. Shah. TelegraphCQ: Continuous dataflow processing for an uncertain world. In CIDR, 2003.Google ScholarGoogle Scholar
  6. N. Chaudhry, K. Shaw, M. Abdelguerfi. Stream Data Management. Springer, April 2005.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Gertz, Q. Hart, C. Rueda, S. Singhal, J. Zhang. A data and query model for streaming geospatial image data. In EDBT'06 Workshops, LNCS 4254, 687--699, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Q. Hart, M. Gertz. Querying streaming geospatial image data: The GeoStreams Project. In SSDBM'05, 147--150, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, H. Zheng. Overview of the Ptolemy Project. Technical Report UCB/ERL M03/25, University of California, Berkeley, July 2003.Google ScholarGoogle Scholar
  10. J. R. Jensen. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice Hall, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Kifer, S. Ben-David, J. Gehrke. Detecting change in data streams. In VLDB, 180--191, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. Konstantinides, J. R. Rasure. The Khoros software development environment for image and signal processing. IEEE Transactions on Image Processing, 3(3):243--252, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Krishnamurthy, S. Sen, Y. Zhang, Y. Chen. Sketch-based change detection: methods, evaluation, and applications. In SIGCOMM'03, 234--247, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. A. Lee, T. M. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773--801, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  15. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao. Concurrency and Computation: Practice & Experience, Special Issue on Scientific Workflows, Chapter Scientific Workflow Management and the Kepler System, 2007.Google ScholarGoogle Scholar
  16. R. S. Lunetta, C. D. Elvidge. Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Ann Arbor Press, 1998.Google ScholarGoogle Scholar
  17. A. P. Marathe, K. Salem. Query processing techniques for arrays. In SIGMOD'99, ACM Press, 323--334, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Murray, J. McWhirter, S. Wier, S. Emmerson. The integrated data viewer-a web-enabled application for scientific analysis and visualization. In 19th Conference on Interactive Information Processing Systems, AMS, 2003.Google ScholarGoogle Scholar
  19. S. G. Parker, M. Miller, C. D. Hansen, C. R. Johnson. An integrated problem solving environment: The SCIRun computational steering system. HICSS'98, VOl.7, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Radke, S. Andra, O. Al-Kofahi, B. Roysam. Image change detection algorithms: A systematic survey. IEEE Transactions on Image Processing, 14(3):294--307, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. X. Ritter, J. N. Wilson. Handbook of Computer Vision Algorithms in Image Algebra. CRC Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. P. L. Rosin. Thresholding for change detection. Computer Vision and Image Understanding, 86(2):79--95, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Rueda, M. Gertz, B. Ludäscher, B. Hamann. An extensible infrastructure for processing distributed geospatial data streams. In SSDBM'06, 285--290, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Shekhar, S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2002.Google ScholarGoogle Scholar
  25. J. Yeh. Image and video processing libraries in Ptolemy II. Technical Report UCB/ERL M03/52, EECS Department, University of California, 2003.Google ScholarGoogle Scholar
  26. Y. Zhu, D. Shasha. Efficient elastic burst detection in data streams. In SIGKDD'03, ACM, 336--345, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Modeling satellite image streams for change analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        GIS '07: Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems
        November 2007
        439 pages
        ISBN:9781595939142
        DOI:10.1145/1341012

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 November 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate220of1,116submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader