skip to main content
article

Digital bas-relief from 3D scenes

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

We present a system for semi-automatic creation of bas-relief sculpture. As an artistic medium, relief spans the continuum between 2D drawing or painting and full 3D sculpture. Bas-relief (or low relief) presents the unique challenge of squeezing shapes into a nearly-flat surface while maintaining as much as possible the perception of the full 3D scene. Our solution to this problem adapts methods from the tone-mapping literature, which addresses the similar problem of squeezing a high dynamic range image into the (low) dynamic range available on typical display devices. However, the bas-relief medium imposes its own unique set of requirements, such as maintaining small, fixed-size depth discontinuities. Given a 3D model, camera, and a few parameters describing the relative attenuation of different frequencies in the shape, our system creates a relief that gives the illusion of the 3D shape from a given vantage point while conforming to a greatly compressed height.

Skip Supplemental Material Section

Supplemental Material

pps032.mp4

mp4

45.5 MB

References

  1. Ashikhmin, M. 2002. A tone mapping algorithm for high contrast images. In EGRW '02: Proceedings of the 13th Eurographics workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Belhumeur, P. N., Kriegman, D. J., and Yuille, A. L. 1999. The bas-relief ambiguity. International Journal of Computer Vision 35, 1 (Nov.), 33--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cignoni, P., Montani, C., and Scopigno, R. 1997. Automatic generation of bas- and high-reliefs. Journal of Graphics Tools 2, 3, 15--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., and Santella, A. 2003. Suggestive contours for conveying shape. ACM Transactions on Graphics (SIGGRAPH '03) 22, 3 (July), 848--855. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. DiCarlo, J., and Wandell, B. 2000. Rendering high dynamic range images. In Proceedings of the SPIE Electronic Imaging '2000 conference, vol. 3965, 392--401.Google ScholarGoogle Scholar
  6. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics (SIGGRAPH '02) 21, 3 (July), 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Transactions on Graphics (SIGGRAPH '02) 21, 3 (July), 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Flaxman, J. 1829. Lectures on Sculpture. Charles Knight, Pall Mall East, London.Google ScholarGoogle Scholar
  9. Gooch, A., Gooch, B., Shirley, P. S., and Cohen, E. 1998. A non-photorealistic lighting model for automatic technical illustration. In Computer Graphics (Proc. of ACM SIGGRAPH '98), 447--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Computer Graphics (Proc. of ACM SIGGRAPH '00), 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hockney, D. 2001. Secret Knowledge: Rediscovering the Lost Techniques of the Old Masters. Viking Press.Google ScholarGoogle Scholar
  12. Hoffman, M. 1939. Sculpture Inside and Out. W. W. Norton & Company, New York.Google ScholarGoogle Scholar
  13. Larson, G. W., Rushmeier, H., and Piatko, C. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4 (October - December), 291--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Markosian, L., Kowalski, M. A., Trychin, S. J., Bourdev, L. D., Goldstein, D., and Hughes, J. F. 1997. Real-time nonphotorealistic rendering. In Computer Graphics (Proc. of ACM SIGGRAPH '97), 415--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Meier, B. J. 1996. Painterly rendering for animation. In Computer Graphics (Proceedings of SIGGRAPH 96), 477--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Raskar, R., Ziegler, R., and Willwacher, T. 2002. Cartoon dioramas in motion. In NPAR 2002: Second International Symposium on Non Photorealistic Rendering, 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Read, H. 1961. The Art of Sculpture, 2nd ed. Bollingen Foundation, New York.Google ScholarGoogle Scholar
  18. Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. In SIGGRAPH '02: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 267--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sourin, A. 2001. Functionally based virtual embossing. The Visual Computer 17, 4, 258--271.Google ScholarGoogle ScholarCross RefCross Ref
  20. Späth, C., 2006. The digital stone project. http://digitalstoneproject.org/.Google ScholarGoogle Scholar
  21. Tumblin, J., and Turk, G. 1999. LCIS: A boundary hierarchy for detail-preserving contrast reduction. In Computer Graphics (Proc. of SIGGRAPH '99), 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Winkenbach, G., and Salesin, D. H. 1996. Rendering parametric surfaces in pen and ink. In Computer Graphics (Proc. of ACM SIGGRAPH '96), 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yen, J., and Séquin, C. 2001. Escher sphere construction kit. 2001 Acm Symposium on Interactive 3D Graphics (March), 95--98. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Digital bas-relief from 3D scenes

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader