skip to main content
10.1145/1275808.1276379acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Image deblurring with blurred/noisy image pairs

Published:29 July 2007Publication History

ABSTRACT

Taking satisfactory photos under dim lighting conditions using a hand-held camera is challenging. If the camera is set to a long exposure time, the image is blurred due to camera shake. On the other hand, the image is dark and noisy if it is taken with a short exposure time but with a high camera gain. By combining information extracted from both blurred and noisy images, however, we show in this paper how to produce a high quality image that cannot be obtained by simply denoising the noisy image, or deblurring the blurred image alone.

Our approach is image deblurring with the help of the noisy image. First, both images are used to estimate an accurate blur kernel, which otherwise is difficult to obtain from a single blurred image. Second, and again using both images, a residual deconvolution is proposed to significantly reduce ringing artifacts inherent to image deconvolution. Third, the remaining ringing artifacts in smooth image regions are further suppressed by a gain-controlled deconvolution process. We demonstrate the effectiveness of our approach using a number of indoor and outdoor images taken by off-the-shelf hand-held cameras in poor lighting environments.

Skip Supplemental Material Section

Supplemental Material

pps001.mp4

mp4

33.9 MB

References

  1. Bardsley, J., Jefferies, S., Nagy, J., and Plemmons, R. 2006. Blind iterative restoration of images with spatially-varying blur. In Optics Express, 1767--1782.Google ScholarGoogle Scholar
  2. Bascle, B., Blake, A., and Zisserman, A. 1996. Motion deblurring and super-resolution from an image sequence. In Processings of ECCV, vol. II, 573--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ben-Ezra, M., and Nayar, S. K. 2003. Motion deblurring using hybrid imaging. In Processings of CVPR, vol. I, 657--664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bennett, E. P., and McMillan, L. 2005. Video enhancement using per-pixel virtual exposures. ACM Trans. Graph. 24, 3, 845--852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Buades, A., Coll, B., and Morel, J. M. 2005. A non-local algorithm for image denoising. In Proceedings of CVPR, vol. II, 60--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Canny, J. 1986. A computational approach to edge detection. IEEE Trans. on PAMI. 8, 6, 679--698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Caron, J. N., M., N. N., and J., R. C. 2002. Noniterative blind data restoration by use of an extracted filter function. Applied optics (Appl. opt.) 41, 32, 68--84.Google ScholarGoogle Scholar
  8. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. In Proceedings of SIGGRAPH, 369--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. In Proceedings of SIGGRAPH, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eisemann, E., and Durand, F. 2004. Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 3, 673--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Engl, H. W., Hanke, M., and Neubauer, A. 2000. Regularization of Inverse Problems. Kluwer Academic.Google ScholarGoogle Scholar
  12. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. In Proceedings of SIGGRAPH, 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., and Freeman, W. T. 2006. Removing camera shake from a single photograph. In ACM Trans. Graph., vol. 25, 787--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Geman, D., and Reynolds, G. 1992. Constrained restoration and the recovery of discontinuities. IEEE Trans. on PAMI. 14, 3, 367--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Richardson, W. 1972. Bayesian-based iterative method of image restoration. JOSA, A 62, 1, 55--59.Google ScholarGoogle Scholar
  16. Jalobeanu, A., Blanc-Feraud, L., and Zerubia, J. 2002. Estimation of blur and noise parameters in remote sensing. In Proceedings of ICASSP, 249--256.Google ScholarGoogle Scholar
  17. Jia, J., Sun, J., Tang, C.-K., and Shum, H.-Y. 2004. Bayesian correction of image intensity with spatial consideration. In Proceedings of ECCV, 342--354.Google ScholarGoogle Scholar
  18. Kundur, D., and Hatzinakos, D. 1996. Blind image deconvolution. IEEE Signal Processing Magazine. 13, 3, 43--64.Google ScholarGoogle ScholarCross RefCross Ref
  19. Levin, A. 2006. Blind motion deblurring using image statistics. In Advances in Neural Information Processing Systems (NIPS).Google ScholarGoogle Scholar
  20. Li, Y., Sharan, L., and Adelson, E. H. 2005. Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. 24, 3, 836--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lim, S. H., and Silverstein, D. A. 2006. Method for deblurring an image. US Patent Application, Pub. No. US2006/0187308 A1, Aug 24, 2006.Google ScholarGoogle Scholar
  22. Liu, X., and Gamal, A. 2001. Simultaneous image formation and motion blur restoration via multiple capture. Proceedings of ICASSP.. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, C., Freeman, W., Szeliski, R., and Kang, S. 2006. Noise estimation from a single image. In Proceedings of CVPR, vol. I, 901--908. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Neelamani, R., Choi, H., and Baraniuk, R. 2004. ForWaRd: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. on Signal Processing 52, 2, 418--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nikon. 2005. http://www.nikon.co.jp/main/eng/portfolio/about/technology/nikon_technology/vr_e/index.htm.Google ScholarGoogle Scholar
  26. Perona, P., and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on PAMI 12, 7, 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., and Toyama., K. 2004. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23, 3, 664--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Portilla, J., Strela, V., Wainwright, M., and Simoncelli., E. P. 2003. Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. on Image Processing 12, 11, 1338--1351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Raskar, R., Agrawal, A., and Tumblin, J. 2006. Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans. Graph. 25, 3, 795--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rav-Acha, A., and Peleg, S. 2000. Restoration of multiple images with motion blur in different directions. IEEE Workshop on Applications of Computer Vision.Google ScholarGoogle ScholarCross RefCross Ref
  31. Rav-Acha, A., and Peleg, S. 2005. Two motion-blurred images are better than one. Pattern Recogn. Lett. 26, 3, 311--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Reeves, S. J., and Mersereau, R. M. 1992. Blur identification by the method of generalized cross-validation. IEEE Trans. on Image Processing. 1, 3, 301--311.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Roth, S., and Black, M. J. 2005. Fields of experts: A framework for learning image priors. In Proceedings of CVPR, vol. II, 860--867. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Rudin, L., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Phys. D. 60, 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Simoncelli, E. P., and Adelson, E. H. 1996. Noise removal via bayesian wavelet coring. In Proceedings of ICIP, vol. I, 379--382.Google ScholarGoogle Scholar
  36. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proceedings of ICCV, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Y. Yitzhaky, I. Mor, A. L., and Kopeika., N. 1998. Direct method for restoration of motion blurred images. J. Opt. Soc. Am., A 15, 6, 1512--1519.Google ScholarGoogle ScholarCross RefCross Ref
  38. Zarowin, C. B. 1994. Robust, noniterative, and computationally efficient modification of vab cittert deconvolution optical figuring. JOSA, A 11, 10, 2571--2583.Google ScholarGoogle Scholar

Index Terms

  1. Image deblurring with blurred/noisy image pairs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '07: ACM SIGGRAPH 2007 papers
          August 2007
          1019 pages
          ISBN:9781450378369
          DOI:10.1145/1275808

          Copyright © 2007 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 July 2007

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          SIGGRAPH '07 Paper Acceptance Rate108of455submissions,24%Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader