skip to main content
article

On compact routing for the internet

Published:20 July 2007Publication History
Skip Abstract Section

Abstract

The Internet's routing system is facing stresses due to its poor fundamental scaling properties. Compact routing is a research field that studies fundamental limits of routing scalability and designs algorithms that try to meet these limits. In particular, compact routing research shows that shortest-path routing, forming a core of traditional routing algorithms, cannot guarantee routing table (RT) sizes that on all network topologies grow slower than linearly as functions of the network size. However, there are plenty of compact routing schemes that relax the shortest-path requirement and allow for improved, sublinear RT size scaling that is mathematically provable for all static network topologies. In particular, there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer RT sizes that scale logarithmically with the network size.

In this paper, we demonstrate that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic RT size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale "indefinitely.

References

  1. D. Meyer, L. Zhang, and K. Fall (Eds.). Report from the IAB workshop on routing and addressing. IRTF, Internet Draft, 2007. http://www.ietf.org/internet-drafts/draft-iab-raws-report-02.txt.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Doria, E. Davies, and F. Kastenholz (Edts.). Requirements for inter-domain routing. IRTF, Internet Draft, 2006.Google ScholarGoogle Scholar
  3. C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing convergence. Transactions on Networking, 9(3), 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. BGP Table Data, http://bgp.potaroo.net/.Google ScholarGoogle Scholar
  5. G. Huston. Scaling inter-domain routing -- a view forward. The Internet Protocol Journal, 4(4), 2001.Google ScholarGoogle Scholar
  6. G. Huston. Commentary on inter-domain routing in the Internet. IETF, RFC 3221, 2001.Google ScholarGoogle Scholar
  7. A. Broido, E. Nemeth, and kc claffy. Internet expansion, refinement, and churn. European Transactions on Telecommunications, 13(1):33--51, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  8. H. Narayan, R. Govindan, and G. Varghese. The impact of address allocation and routing on the structure and implementation of routing tables. In SIGCOMM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Beyond BGP. http://www.beyondbgp.net/. NodesGoogle ScholarGoogle Scholar
  10. P. Verkaik, A. Broido, kc claffy, R. Gao, Y. Hyun, and R. van der Pol. Beyond CIDR aggregation. Technical Report TR-2004-1, CAIDA, 2004.Google ScholarGoogle Scholar
  11. Internet Engineering Task Force (IETF). Site multihoming in IPv6. Working Group.Google ScholarGoogle Scholar
  12. F. Kastenholz. ISLAY: A new routing and addressing architecture. IRTF, Internet Draft, 2002.Google ScholarGoogle Scholar
  13. I. Castineyra, N. Chiappa, and M. Steenstrup. The nimrod routing architecture. IETF, RFC 1992, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. Gummadi, R. Govindan, N. Kothari, B. Karp, Y. -J. Kim, and S. Shenker. Reduced state routing in the Internet. In HotNets, 2004.Google ScholarGoogle Scholar
  15. L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and I. Stoica. HLP: A next generation inter-domain routing protocol. In SIGCOMM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and S. Shenker. ROFL: Routing on at labels. In SIGCOMM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Gavoille and S. Pérennès. Memory requirement for routing in distributed networks. In PODC, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. N. Spring, R. Mahajan, and T. Anderson. Quantifying the causes of path in ation. In SIGCOMM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Behrens and J. J. Garcia-Luna-Aceves. Distributed, scalable routing based on link-state vectors. In SIGCOMM, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. L. Kleinrock and F. Kamoun. Hierarchical routing for large networks: Performance evaluation and optimization. Computer Networks, 1:155--174, 1977.Google ScholarGoogle Scholar
  21. I. Abraham, C. Gavoille, A. Goldberg, and D. Malkhi. Routing in networks with low doubling dimension. In ICDCS, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. P. Indyk and J. MatouŠek. Handbook of Discrete and Computational Geometry, chapter 8, Low-Distortion Embeddings of Finite Metric Spaces. Chapman & Hall/CRC, Boca Raton, 2004.Google ScholarGoogle Scholar
  23. I. Abraham, Y. Bartal, T. -H. H. Chan, K. Dhamdhere, A. Gupta, J. Kleinberg, O. Neiman, and A. Slivkins. Metric embeddings with relaxed guarantees. In FOCS, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Fraigniaud and C. Gavoille. Routing in trees. In ICALP, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Thorup and U. Zwick. Compact routing schemes. In SPAA, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. MatouŠek. Lectures on Discrete Geometry, chapter 15, Embedding Finite Metric Spaces into Normed Spaces. Springer, New York, 2002.Google ScholarGoogle Scholar
  27. R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In FOCS, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM, 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dimitropoulos, kc claffy, and A. Vahdat. The Internet AS-level topology: Three data sources and one definitive metric. Computer Communication Review, 36(1), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. Chung and L. Lu. The average distance in a random graph with given expected degrees. Internet Mathematics, 1(1):91--114, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  31. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws, shrinking diameters and possible explanations. In KDD, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Krioukov, K. Fall, and X. Yang. Compact routing on Internet-like graphs. In INFOCOM, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  33. C. Gavoille and M. Genegler. Space-efficiency for routing schemes of stretch factor three. Journal of Parallel and Distributed Computing, 61(5):679--687, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Thorup and U. Zwick. Approximate distance oracles. In STOC, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. L. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170--183, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-independent routing with minimum stretch. In SPAA, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Arias, L. Cowen, K. A. Laing, R. Rajaraman, and O. Taka. Compact routing with name independence. In SPAA, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Brady and L. Cowen. Compact routing on power-law graphs with additive stretch. In ALENEX, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Carmi, R. Cohen, and D. Dolev. Searching complex networks efficiently with minimal information. Europhysics Letters, 74:1102--1108, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  40. T. Griffin and G. Wilfong. An analysis of BGP convergence properties. In SIGCOMM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. T. Griffin and G. Wilfong. Analysis of the MED oscillation problem in BGP. In ICNP, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Y. Afek, E. Gafni, and M. Ricklin. Upper and lower bounds for routing schemes in dynamic networks. In FOCS, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Korman and D. Peleg. Dynamic routing schemes for general graphs. In ICALP, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. CAIDA. Macroscopic topology AS adjacencies. http://www.caida.org/tools/measurement/skitter/as adjacencies.xml.Google ScholarGoogle Scholar
  45. The DIMES project. http://www.netdimes.org/.Google ScholarGoogle Scholar
  46. K. A. Laing and R. Rajaraman. A space lower bound for name-independent compact routing in trees. In SPAA, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. I. Abraham, C. Gavoille, and D. Malkhi. On space-stretch trade-offs: Lower bounds. In SPAA, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. S. Milgram. The small world problem. Psychology Today, 1:61--67, 1967.Google ScholarGoogle Scholar
  49. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Metric structure of random networks. Nuclear Physics B, 653(3):307--422, 2003.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. On compact routing for the internet

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader