skip to main content
article
Free Access

Learning Spectral Clustering, With Application To Speech Separation

Published:01 December 2006Publication History
Skip Abstract Section

Abstract

Spectral clustering refers to a class of techniques which rely on the eigenstructure of a similarity matrix to partition points into disjoint clusters, with points in the same cluster having high similarity and points in different clusters having low similarity. In this paper, we derive new cost functions for spectral clustering based on measures of error between a given partition and a solution of the spectral relaxation of a minimum normalized cut problem. Minimizing these cost functions with respect to the partition leads to new spectral clustering algorithms. Minimizing with respect to the similarity matrix leads to algorithms for learning the similarity matrix from fully labelled data sets. We apply our learning algorithm to the blind one-microphone speech separation problem, casting the problem as one of segmentation of the spectrogram.

References

  1. K. Achan, S. Roweis, and B. Frey. Probabilistic inference of speech signals from phaseless spectrograms. In Advances in Neural Information Processing Systems 16. MIT Press, 2003.Google ScholarGoogle Scholar
  2. F. R. Bach and M. I. Jordan. Discriminative training of hidden Markov models for multiple pitch tracking. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions using equivalence relations. In International Conference on Machine Learning (ICML), 2003.Google ScholarGoogle Scholar
  4. K.-J. Bathe and E. L. Wilson. Numerical Methods in Finite Element Analysis. Prentice Hall, 1976.Google ScholarGoogle Scholar
  5. D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Blatt, M. Wiesman, and E. Domany. Data clustering using a model granular magnet. Neural Computation, 9:1805-1842, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. S. Bregman. Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. J. Brown and M. P. Cooke. Computational auditory scene analysis. Computer Speech and Language, 8:297-333, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  9. P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral K-way ratio-cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits, 13(9):1088-1096, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.Google ScholarGoogle Scholar
  11. P. Comon and G. H. Golub. Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, 78(8):1327-1343, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Cooke and D. P. W. Ellis. The auditory organization of speech and other sources in listeners and computational models. Speech Communication, 35(3-4):141-177, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  13. T. Cour, N. Gogin, and J. Shi. Learning spectral graph segmentation. In Workshop on Artificial Intelligence and Statistics (AISTATS), 2005.Google ScholarGoogle Scholar
  14. N. Cristianini, J. Shawe-Taylor, and J. Kandola. Spectral kernel methods for clustering. In Advances in Neural Information Processing Systems, 14. MIT Press, 2002.Google ScholarGoogle Scholar
  15. I. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral clustering and and graph cuts. Technical Report #TR-04-25, University of Texas, Computer Science, 2004.Google ScholarGoogle Scholar
  16. C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In Proceedings of the SIAM International Conference on Data Mining (SDM), 2005.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Fowlkes, S. Belongie, and J. Malik. Efficient spatiotemporal grouping using the Nyström method. In IEEE conference on Computer Vision and Pattern Recognition (ECCV), 2001.Google ScholarGoogle ScholarCross RefCross Ref
  19. B. Gold and N. Morgan. Speech and Audio Signal Processing: Processing and Perception of Speech and Music. Wiley Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 1996.Google ScholarGoogle Scholar
  21. A. G. Gray and A. W. Moore. N-Body problems in statistical learning. In Advances in Neural Information Processing Systems, 13. MIT Press, 2001.Google ScholarGoogle Scholar
  22. D. W. Griffin and J. S. Lim. Signal estimation from modified short-time Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing, 32(2):236-243, 1984.Google ScholarGoogle Scholar
  23. M. Gu, H. Zha, C. Ding, X. He, and H. Simon. Spectral relaxation models and structure analysis for K-way graph clustering and bi-clustering. Technical report, Penn. State Univ, Computer Science and Engineering, 2001.Google ScholarGoogle Scholar
  24. D. Higham and M. Kibble. A unified view of spectral clustering. Technical Report 02, University of Strathclyde, Department of Mathematics, 2004.Google ScholarGoogle Scholar
  25. L. J. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193-218, 1985.Google ScholarGoogle Scholar
  26. A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.Google ScholarGoogle Scholar
  27. G.-J. Jang and T.-W. Lee. A maximum likelihood approach to single-channel source separation. Journal of Machine Learning Research, 4:1365-1392, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Jourjine, S. Rickard, and O. Yilmaz. Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. D. Kamvar, D. Klein, and C. D. Manning. Spectral learning. In International Joint Conference on Artificial Intelligence (IJCAI), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems, 12. MIT Press, 2000.Google ScholarGoogle Scholar
  31. J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics and econometrics. John Wiley, 1999.Google ScholarGoogle Scholar
  32. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998.Google ScholarGoogle Scholar
  33. D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International Conference on Computer Vision (ICCV), 2001.Google ScholarGoogle ScholarCross RefCross Ref
  34. M. Meila and D. Heckerman. An experimental comparison of several clustering and initialization methods. Machine Learning, 42(1):9-29, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. M. Meila and J. Shi. Learning segmentation by random walks. In Advances in Neural Information Processing Systems, 14. MIT Press, 2002.Google ScholarGoogle Scholar
  36. M. Meila and L. Xu. Multiway cuts and spectral clustering. Technical report, University of Washington, Department of Statistics, 2003.Google ScholarGoogle Scholar
  37. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In Advances in Neural Information Processing Systems, 14. MIT Press, 2002.Google ScholarGoogle Scholar
  38. M. L. Overton and R. S. Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrics. Mathematical Programming, 62:321-357, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. T. Roweis. One microphone source separation. In Advances in Neural Information Processing Systems, 13. MIT Press, 2001.Google ScholarGoogle Scholar
  40. G. L. Scott and H. C. Longuet-Higgins. Feature grouping by relocalisation of eigenvectors of the proximity matrix. In British Machine Vision Conference, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  41. N. Shental, A. Zomet, T. Hertz, and Y. Weiss. Learning and inferring image segmentations using the gbp typical cut algorithm. In International Conference on Computer Vision (ICCV), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks. In Advances in Neural Information Processing Systems, 14. MIT Press, 2002.Google ScholarGoogle Scholar
  44. N. Tishby and N. Slonim. Data clustering by Markovian relaxation and the information bottleneck method. In Advances in Neural Information Processing Systems, 13. MIT Press, 2001.Google ScholarGoogle Scholar
  45. U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In Advances in Neural Information Processing Systems, 17. MIT Press, 2005.Google ScholarGoogle Scholar
  46. K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained K-means clustering with background knowledge. In International Conference on Machine Learning (ICML), 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. G. Wahba. Spline Models for Observational Data. SIAM, 1990.Google ScholarGoogle Scholar
  48. Y. Weiss. Segmentation using eigenvectors: a unifying view. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. E. P. Xing and M. I. Jordan. On semidefinite relaxation for normalized k-cut and connections to spectral clustering. Technical Report UCB/CSD-03-1265, EECS Department, University of California, Berkeley, 2003.Google ScholarGoogle Scholar
  50. E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. In Advances in Neural Information Processing Systems, 15. MIT Press, 2003.Google ScholarGoogle Scholar
  51. S. X. Yu and J. Shi. Grouping with bias. In Advances in Neural Information Processing Systems, 14. MIT Press, 2002.Google ScholarGoogle Scholar
  52. S. X. Yu and J. Shi. Multiclass spectral clustering. In International Conference on Computer Vision (ICCV), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral relaxation for K-means clustering. In Advances in Neural Information Processing Systems, 14. MIT Press, 2002.Google ScholarGoogle Scholar
  54. M. Zibulevsky, P. Kisilev, Y. Y. Zeevi, and B. A. Pearlmutter. Blind source separation via multinode sparse representation. In Advances in Neural Information Processing Systems, 14. MIT Press, 2002.Google ScholarGoogle Scholar

Index Terms

  1. Learning Spectral Clustering, With Application To Speech Separation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image The Journal of Machine Learning Research
          The Journal of Machine Learning Research  Volume 7, Issue
          12/1/2006
          2725 pages
          ISSN:1532-4435
          EISSN:1533-7928
          Issue’s Table of Contents

          Publisher

          JMLR.org

          Publication History

          • Published: 1 December 2006
          Published in jmlr Volume 7, Issue

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader