skip to main content
10.1145/1236360.1236391acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
Article

LaserSPECks:: laser SPECtroscopic trace-gas sensor networks - sensor integration and applications

Published:25 April 2007Publication History

ABSTRACT

We introduce a novel laser spectroscopic trace-gas sensor platform, LaserSPECks that integrates recently developed miniature quartz-enhanced photoacoustic spectroscopy (QE-PAS) gas sensing technology. This universal platform uses infrared laser spectroscopy detect and quantify numerous gas species at part-per-million to part-per-billion (ppm-ppb) concentrations [2]. Traditional gas sensing devices capable of the same sensitivity and specificity are several orders of magnitude larger in size, cost, and power consumption. Thus, high resolution gas sensing technology has been difficult to integrate into small, low-power, replicated sensors suitable for wireless sensor networks (WSNs). This paper presents the principles behind laser based trace gas detection, design issues, and outlines the implementation of a miniaturized trace-gas sensor from commerical-off-the-shelf (COTS) components. We report on an early prototype as a proof-of-concept for integration into WSN applications. We also describe a number of ongoing collaborations in utilizing the platform in air pollution and carbon ux quantification, industrial plant control, explosives detection, and medical diagnosis. Furthermore, we discuss experimental performance evaluations to examine general platform requirements for these types of sensors. The results of our evaluation illustrate that our prototype improves upon previous gas sensing technology by two orders of magnitude in measures of power consumption, size, and cost, without sacrificing sensor performance. Our design and experiments reveal that laser-based trace-gas sensors built from COTS can be successfully implemented and integrated within WSN nodes to enable a wide range of new and important sensing applications.

References

  1. C. Chen and Z. Li. A Low-Power CMOS Analog Multiplier. IEEE Trans. Circ. Sys. II, 53(2):100--104, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  2. R. Curl and F. Tittel. Tunable infrared laser spectroscopy. Annu. Rep. Prog. Chem. C, (98):217--270, 2002.Google ScholarGoogle Scholar
  3. A. Kosterev, Y. Bakhirkin, R. Curl, and F. Tittel. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett., 27:1902--1904, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Kosterev, Y. Bakhirkin, and F. Tittel. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region. Appl. Phys. B, (80):133--138, 2005.Google ScholarGoogle Scholar
  5. A. Kosterev, T. Moseley, and F. Tittel. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN. Appl. Phys. B, (85):295--300, 2006.Google ScholarGoogle Scholar
  6. A. Kosterev, F. Tittel, D. Serebryakov, A. Malinovsky, and I. Morozov. Applications of quartz tuning forks in spectroscopic gas sensing. Rev. of Sci. Instr., 76(043105), 2005.Google ScholarGoogle Scholar
  7. A. Mandelis. Signal-to-noise ratio in lock-in amplifier synchronous detection: A generalized communications systems approach with applications to frequency, time, and hybrid (rate window) photothermal measurements. Rev. of Sci. Instr., (65):3309, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  8. Y. Matsuyoshi, Y. Satoh, T. Shinozaki, E. Suzuki, and N. Nagata. High-speed and sensitive multiple-point ammonia gas monitor system. In Semiconductor Manufacturing Conference Proceedings, 1999 IEEE International Symposium on, pages 409--412, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. R. McCurdy, Y. A. Bakhirkin, and F. Tittel. Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide. Appl. Phys. B, (85):445--452, 2006.Google ScholarGoogle Scholar
  10. B. Moeskops, H. Naus, S. Cristescu, and F. Harren. Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath. Appl. Phys. B, (82):649--654, 2006.Google ScholarGoogle Scholar
  11. C. C. Mulligan, D. R. Justes, R. J. Noll, N. L. Sanders, B. C. Laughlin, and R. G. Cooks. Direct monitoring of toxic compounds in air using a portable mass spectrometer. Analyst, (131):556--567, 2006.Google ScholarGoogle Scholar
  12. C. Panichi and G. L. Ruffa. Stable isotope geochemistry of fumaroles: an insight into volcanic surveillance. J. of Geodynamics, 32(4--5):519--542, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless research. In International symposium on Information processing in sensor networks (IPSN), SPOTS track, page 48, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino. The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transfer, (82):5--44, 2003Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Silver and M. Zondlo. High-precision CO2 sensor for meteorological balloons. In S. Christesen, A. S. III, J. Gillespie, and K. Ewing, editors, Optics East, volume 6378-15, page 63780J. SPIE, 2006.Google ScholarGoogle Scholar
  16. D. Smith, T. Wang, J. Sule-Suso, P. Spanel, and A. El Haj. Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion ow tube mass spectrometry. Rapid Comm. in Mass Spectr., 77(8):845--850, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. So, G. Wysocki, J. Frantz, and F. Tittel. Development of DSP controlled quantum cascade laser-based trace gas sensor technology. IEEE Sensors J., 6(5):1057--1067, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. O. Sonnaillon and F. J. Bonetto. A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously. Rev. of Sci. Instr., 76(024703), 2005.Google ScholarGoogle Scholar
  19. S. Strozecki. Switching regulator forms constant-current source. EDN magazine, page 92, May 2002.Google ScholarGoogle Scholar
  20. Texas Instruments. SLOS390A, DRV592 Datasheet, 2002.Google ScholarGoogle Scholar
  21. T. L. Toan, F. Ribbes, L.-F. Wang, N. Floury, K.-H. Ding, J. A. Kong, M. Fujita, and T. Kurosu. Rice crop mapping and monitoring using ERS -1 data based on experiment and modeling results. IEEE Trans. on Geoscience and Remote Sensing, 35(1):41--56, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner. Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy. Meas. Sci. and Tech., 16:1547--1553, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Webster, G. Flesch, K. Mansour, R. Haberle, and J. Bauman. Mars laser hygrometer. Appl. Opt., (27):4436--4445, 2004.Google ScholarGoogle Scholar
  24. D. Weidmann, A. A. Kosterev, F. K. Tittel, N. Ryan, and D. McDonald. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy. Opt. Lett., 29(16):1837--1839, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  25. E. Welsh, W. Fish, and J. Frantz. GNOMES: A testbed for low-power heterogeneous wireless sensor networks. In IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages 836--839, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  26. G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2):18--25, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Wojcik, M. Phillips, B. Cannon, and M. Taubman. Gas-phase photoacoustic sensor at 8.41μm using quartz tuning forks and amplitude-modulated quantum cascade lasers. Appl. Phys. B, 85:307--313, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  28. G. Wysocki, A. Kosterev, and F. Tittel. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 μm. Appl. Phys. B, (85):301--306, 2006.Google ScholarGoogle Scholar
  29. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel. Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide. Appl. Opt., 43(32):6040--6046, 2004.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. LaserSPECks:: laser SPECtroscopic trace-gas sensor networks - sensor integration and applications

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        IPSN '07: Proceedings of the 6th international conference on Information processing in sensor networks
        April 2007
        592 pages
        ISBN:9781595936387
        DOI:10.1145/1236360

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 April 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate143of593submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader