skip to main content
article
Free Access

Voronoi diagrams—a survey of a fundamental geometric data structure

Published:01 September 1991Publication History
First page image

References

  1. AGARWAL, P. K., EDELSBRUNNER, H., SCHWARZKOPF, O., AND WELZL, E. 1990. Euclidean minimum spanning trees and bicromatic closest pairs. In Proceedings of the 6th Annual ACM Symposium on Computational Geometry, pp. 203-210. Google ScholarGoogle Scholar
  2. AGGARWAL, A., AND SURI, S. 1987. Fast algorithms for computing the largest empty rectangle. In Proceedings of the 3rd Annual ACM Symposium on Computational Geometry, pp. 278-290. Google ScholarGoogle Scholar
  3. AGGARWAL, A., HANSEN, M., ANn LEIGHTON, T. 1990. Solving query retrieval problems by compacting Voronoi diagrams. In Proceedings of the 22nd Annual ACM Symposium on STOC, pp. 331-340. Google ScholarGoogle Scholar
  4. AGGARWAL, A., GUIBAS, L. J., SAXE, J., AND SHOR, P. W. 1989a. A linear time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geometry 4, 591-604. Google ScholarGoogle Scholar
  5. AGGARWAL, A., IMAI, H., KATOH, N., AND SURI, S. 1989b. Finding k points with minimum diameter and related problems. In Proceedings of the 5th Annual ACM Symposium on Computational Geometry, pp. 283-291. Google ScholarGoogle Scholar
  6. AGGARWAL, A., CHAZELLE, B., GUIBAS, L. J., O'DUNLAING, C., AND YAP, C. K. 1988. Parallel computational geometry. Algorithmica 3, 293-327.Google ScholarGoogle Scholar
  7. AHUJA, N. 10~2. Dot pattorn processing using Voronoi polygons as neighborhoods. IEEE Trans. Patt. Anal. Mach. Int. PAMI-4, 336-343. Google ScholarGoogle Scholar
  8. AKL, S. 1983 A note on Euclidean matchings, triangulations, and spanning trees. J. Comb. Inf. Syst. Sci. 8, 169-174.Google ScholarGoogle Scholar
  9. ALEXANDERSON, G. L., AND WETZEL, J. E. 1978. Simple partition of space. Math. Magazine 51, 220-225.Google ScholarGoogle Scholar
  10. ALT, H., AND YAP, C. K. 1990. Algorithmic aspects of motion planning: A tutorial (part 2). Algorithms Rev. 1, 61-77.Google ScholarGoogle Scholar
  11. AONUMA, H., IMAI, H., IMAI, K., AND TOKUYAMA, T. 1990. Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams. In Proceedings of 6th Annual ACM Symposium on Computational Geometry. pp. 225-234. Google ScholarGoogle Scholar
  12. ARNOLD, D. B., AND MILNE, W. J. 1984. The use of Voronoi tessellations in processing soil survey results. IEEE Comput. Graph. Appl. 4, 22-30.Google ScholarGoogle Scholar
  13. ARONOV, B. 1989. On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica 4, 109-140.Google ScholarGoogle Scholar
  14. ARONOV, B., FORTUNE, S., AND WILFONG, G. 1988. The furthest-site geodesic Voronoi diagram. In Proceedings of the 4th Annual ACM Symposium on Computational Geometry. pp. 229-240. Google ScholarGoogle Scholar
  15. ARONOV, B., CHAZELLE, B., EDELSBRUNNER, $., GUIBAS, L. J., SHARIR, M., AND WENGER, R. 1990. Points and triangles in the plane and halving planes in space. In Proceedings of the 6th Annual ACM Symposium on Computational Geometry. pp. 112-115. Google ScholarGoogle Scholar
  16. ASANO, T., AND ASANO, T. 1986. Voronoi diagram for points in a simple polygon. In Perspectives in Computing 15, D. S. Johnson, T. Nishizeki, A. Nozaki, H. S. Will Eds. Academic Press, New York, pp. 51-64.Google ScholarGoogle Scholar
  17. ASANO, T., BHATTACHARYA, B., KEIL, M., AND YAO, F. 1988. Clustering algorithms based on minimum and maximum spanning trees. In Proceedings of the 4th Annual ACM Symposium on Computational Geometry, pp. 252-257. Google ScholarGoogle Scholar
  18. ASH, P. F., AND BOLKER, E. D. 1985. Recognizing Dirichlet tessellations. Geometriae Dedicata 19, 175-206.Google ScholarGoogle Scholar
  19. ASH, P. F., AND BOLKER, E. D. 1986. Generalized Dirichlet tessellations. Geometrme Dedicata 20, 209-243.Google ScholarGoogle Scholar
  20. ASH, P. F., BOLKER, E. D., CRAPO, H., AND WHITE- LEY, W. 1988. Convex polyhedra, Dirichlet tessellations, and spider webs. In Shaping Space: A Polyhedral Approach, M. Senechal and G. Fleck, Ed~. Birkh/iuser, Boston, pp. 231-250.Google ScholarGoogle Scholar
  21. AUGENBAUM, J. M., AND PESKIN, C. S. 1985. On the construction of the Voronoi mesh on a sphere. J. Comput. Phys. 59, 177-192.Google ScholarGoogle Scholar
  22. AURENHAMMER, F. 1987a. Power diagrams: Properties, algorithms, and applications. SIAM J. Comput. 16, 78-96. Google ScholarGoogle Scholar
  23. AURENHAMMER, F. 1987b. A criterion for the affine equivalence of cell complexes in R d and convex polyhedra in Rd+ 1. Discrete Comput. Geometry 2, 49-64.Google ScholarGoogle Scholar
  24. AURENHAMMER, F. 1987c. Recognising polytopical cell complexes and constructing projection polyhedra. J. Symbolic Comput. 3, 249-255. Google ScholarGoogle Scholar
  25. AURENHAMMER, F. 1988a. Improved algorithms for discs and balls using power diagrams. J. Algorithms 9, 151-161. Google ScholarGoogle Scholar
  26. AURENHAMMER, F. 1988b. Linear combinations from power domains. Geometriae Dedicata 28, 45-52.Google ScholarGoogle Scholar
  27. AURENHAMMER, F. 1990a. A new duality result concerning Voronoi diagrams. Discrete Comput. Geometry 5, 243-254. Google ScholarGoogle Scholar
  28. AURENHAMMER, F. 1990b. A relationship between Gale transforms and Voronoi diagrams. Discrete Appl. Math. 28, 83-91. Google ScholarGoogle Scholar
  29. AURENHAMMER, F., AND EDELSBRUNNER, $. 1984. An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17, 251-257.Google ScholarGoogle Scholar
  30. AURENHAMMER, F., AND IMAI, H. 1988. Geometric relations among Voronoi diagrams. Geometriae Dedicata 27, 65-75.Google ScholarGoogle Scholar
  31. AURENHAMMER, F., AND SCHWARZKOPF, O. {1991}. A simple on-llne randomized incremental algorithm for computing higher-order Voronoi diagrams. In Proceedings of the 7th Annual ACM Symposium on Computational Geometry. pp. 142-151. Google ScholarGoogle Scholar
  32. AURENHAMMER, F., AND STOCKL, G. 1988. On the peeper's Voronoi diagram. Rep. 264, IIG-TU Graz, Austria.Google ScholarGoogle Scholar
  33. AURENHAMMER, F., ST(SCKL, G., AND WELZL, E. 1991. The post-office problem for fuzzy point sets. Rep. 91-07, FU Berlin, Germany.Google ScholarGoogle Scholar
  34. AVIS, D., AND BHATTACHARYA, B. K. 1983. Algorithms for computing d-dimenslonal Voronoi diagrams and their duals. Adv. Comput. Res. 1,159-180.Google ScholarGoogle Scholar
  35. BABENKO, V. F. 1977. On the optimal cubature ormulae on certain classes of continuous functions. Analys~s Math. 3, 3-9.Google ScholarGoogle Scholar
  36. BADDELEY, A. 1977. A fourth note on recent research in geometrical probability. Adv. Appl. Probab. 9, 824-860.Google ScholarGoogle Scholar
  37. BALTSAN, A., AND SHARm, M. 1988. On shortest paths between two convex polyhedra. J. ACM 35, 267-287. Google ScholarGoogle Scholar
  38. BENTLEY, J. L., AND MAURER, H. A. 1979. A note on Euclidean near neighboring searching in the plane. Inf. Process. Lett. 8, 133-136.Google ScholarGoogle Scholar
  39. BENTLEY, J. L., WEIDE, B. W., AND YAO, A. C. 1980. Optimal expected-time algorithms for closest-point problems. ACM Trans. Math. Sofiw. 6, 563-580. Google ScholarGoogle Scholar
  40. BERN, M. W., EPPSTEIN, D., AND GILBERT, J. 1990. Provably good mesh generation. Manuscript, XEROX Palo Alto Research Center, Palo Alto, Calif.Google ScholarGoogle Scholar
  41. BESAG, J. 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. B 36, 192-236.Google ScholarGoogle Scholar
  42. BIEBERBACH, L. 1912. 'l)ber die Bewegungsgruppen der euklidischen Riiume I, II. Math. Ann. 72, 400-412.Google ScholarGoogle Scholar
  43. BLUM, H. 1967. A transformation for extracting new descriptors of shape. In Proceedings of the Symposium on Models for the Perception of Speech and Visual Form. Weiant Whaten- Dunn, Ed. MIT Press, Cambridge, Mass., pp. 362-380.Google ScholarGoogle Scholar
  44. BLUM, H. 1973. Biological shape and visual science (Part I). J. Theol'. Biol. 38, 205-287.Google ScholarGoogle Scholar
  45. BOISSONNAT, J.-D. 1988. Shape recognition from planar cross sections. Comput. Vision Graph. and Image Process. 44, 1-29. Google ScholarGoogle Scholar
  46. BOISSONNAT, J.-D., AND TEILLAUD, M. 1986. A hierarchical representation of objects: The Delaunay tree. In Proceedings of 2nd Annual ACM Symposium on Computational Geometry, pp. 260-268. Google ScholarGoogle Scholar
  47. BOOTS, B. N. 1979. Weighting Thiessen polygons. Econ. Geography, 248-259.Google ScholarGoogle Scholar
  48. BooTs, B. N. 1986. Voronoi (Thiessen) polygons. In CATMOG 45, Geo Books, Norwich, Conn.Google ScholarGoogle Scholar
  49. BOWYER, A. 1981. Computing Dirichlet tessellations. Computer J. 24, 162-166.Google ScholarGoogle Scholar
  50. BRASSEL, K. E., AND REIF, D. 1979. A procedure to generate Thiessen polygons. Geograph. Anal. 11,289-303.Google ScholarGoogle Scholar
  51. BR~SSON, E. 1989. Representing geometric structures in d dimensions: Topology and order. In Proceedings of the 5th Annual ACM Symposium on Computational Geometry. pp. 218-227. Google ScholarGoogle Scholar
  52. BRONDSTED, A. 1983. An Introduction to Convex Polytopes. Springer, New York, Heidelberg, Berlin.Google ScholarGoogle Scholar
  53. BRosTow, W., AND SICOTTE, Y. 1975. Coordination number in liquid argon. Physica A 80, 513-522.Google ScholarGoogle Scholar
  54. BROSTOW, W., DUSSAULT, J. P., AND FOX, B. L. 1978. Construction of Voronoi polyhedra. J. Comput. Phys. 29, 81-92.Google ScholarGoogle Scholar
  55. BROWN, K. Q. 1979. Voronoi diagrams from convex hulls. Inf. Process. Lett. 9,223-228.Google ScholarGoogle Scholar
  56. BROWN, K. Q. 1980. Geometric transforms for fast geometric algorithms. Ph.D. dissertation, Carnegie-Mellon Univ., Pittsburgh, Penn. Google ScholarGoogle Scholar
  57. BRUMBERGER, H. AND GOODISMAN. 1983. Voronoi cells: An interesting and potentially useful cell model for interpreting the small angle scattering of catalysts. J. Appl. Crystallogr. 16, 83-88.Google ScholarGoogle Scholar
  58. CALABI, L., AND HARTNETT, W.E. 1968. Shape recognition, prairie fires, convex deficiencies, and skeletons. Am. Math. Monthly 75, 335-342.Google ScholarGoogle Scholar
  59. CANNY, J., AND DONALD, B. 1988. Simplified Voronoi diagrams. Discrete Comput. Geom. 3, 2 19-236. Google ScholarGoogle Scholar
  60. CHAZELLE, B. 1985. How to search in history. Inf. Control 64, 77-99. Google ScholarGoogle Scholar
  61. CHAZ~LLE, B., AND EDELSBRUNNER, H. 1987. An improved algorithm for constructing kth-order Voronoi diagrams. IEEE Trans. Comput. C-36, 1349-1354. Google ScholarGoogle Scholar
  62. CHAZELLE, B., AND PREPARATA, F. P. 1986. Hall space range search: an algorithmic application of k-sets. Discrete Comput. Geom. 1, 83-94. Google ScholarGoogle Scholar
  63. CHAZELLE, B., DRYSDALE, R. L., LEE, D. T. 1986a. Computing the largest empty rectangle. SIAM J. Comput. 15, 300-315. Google ScholarGoogle Scholar
  64. CHAZELLE, B., COLE, R., PREPARATA, F. P., AND YAP, C. K. 1986b. New upper bounds for neighbor searching. Inf. Control 68, 105-124. Google ScholarGoogle Scholar
  65. CHAZELLE, B., EDELSBRUNNER, H., GUIBAS, L. J., HERSHBERGER, J. E., SEIDEL, R., AND SHARIR, M. 1990. Slimming down by adding; selecting heavily covered points. In Proceedings of the 6th Annual ACM Symposium on Computational Geometry, pp. 116-127. Google ScholarGoogle Scholar
  66. CHrR~TON, D., AND TARJAN, R. E. 1976. Finding minimum spanning trees. SIAM J. Comput. 5, 724-742.Google ScholarGoogle Scholar
  67. CHEW, L. P. 1986. There is a planar graph almost as good as the complete graph. In Proceedings of the 2nd Annual ACM Symposium on Computational Geometry. pp. 169-177. Google ScholarGoogle Scholar
  68. CHEW, L. P. 1989a. Constrained Delaunay triangulations. Algorithmica 4, 97-108.Google ScholarGoogle Scholar
  69. HEW, L. P. 1989b. Guaranteed-quality triangular meshes. Rep. TR 89-983, Dept. Comput. Sci., Cornell Univ., Ithaca, N.Y.Google ScholarGoogle Scholar
  70. CHEW, L. P., AND DRYSDALE, R. L. 1985. Voronoi diagrams based on convex distance functions. In Proceedings of the 1st Annual ACM Symposium on Computational Geometry. pp. 235-244. Google ScholarGoogle Scholar
  71. CHEW, L. P., AND KEDEM, K. 1989. Placing the largest similar copy of a convex polygon among polygonal obstacles. In Proceedings of the 5th Annual ACM Symposium on Computational Geometry. pp. 167-174. Google ScholarGoogle Scholar
  72. Chow, A. 1980. Parallel algorithms for geometric problems. Ph.D. dissertation. Dept. Comput. Sci., Univ. of Illinois, Urbana, Ill. Google ScholarGoogle Scholar
  73. CI~ISTOFIDES, N. 1976. Worst-case analysis of a new heuristic for the traveling salesman problem. Symposium on Algorithms and Complexity, Carnegie-Mellon Univ., Penn.Google ScholarGoogle Scholar
  74. CLARKSON, K. L. 1987. New applications of random sampling to computational geometry. Discrete Comput. Geom. 2, 195-222.Google ScholarGoogle Scholar
  75. CLARKSON, K. L. 1989. An algorithm for geometric minimum spanning trees requiring nearly linear expected time. Algorithmica4, 461-468.Google ScholarGoogle Scholar
  76. CLARKSON, K. L., AND SHOR, P. W. 1988. Algorithms for diametral pairs and convex hulls that are optinml, randomized, and incremental. In Proceedings of the 4th Annual ACM Symposium on Computational Geometry. pp. 12-17. Google ScholarGoogle Scholar
  77. CLARKSON, K. L., AND SHOR, P. W. 1989. Applica~ tions of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387-421. Google ScholarGoogle Scholar
  78. COLE, R., GOODRICH, M. T., AND O'DUNLAING, C. 1990. Merging free trees in parallel for efficient Voronoi diagram construction. Springer LNCS 443, pp. 432-445. Google ScholarGoogle Scholar
  79. CONWAY, J. M., AND SLOAN~, N. J. A. 1982. Voronoi regions of lattices, second moments of polytopes, and quantization. IEEE Trans. Inf. Theory IT-28, 211-226.Google ScholarGoogle Scholar
  80. CRAIg, L. K. 1978. The Monte Carlo generation of random polygons. Comput. Geosci. 4, 131-141.Google ScholarGoogle Scholar
  81. CRAPO, H. 1979. Structural rigidity. Struct. Topol. 1, 13-45.Google ScholarGoogle Scholar
  82. CRuz ORIVE, L.-M. 1979. Distortion of certain Voronoi tessellations when one particle moves. J. Appl. Probab. 16, 95-103.Google ScholarGoogle Scholar
  83. DAVID, E. E., A~D DAVID, C. W. 1982. Voronoi polyhedra as a tool for studying solvation structure. J. Chem. Phys. 76, 4611-4614.Google ScholarGoogle Scholar
  84. DE FLORIANI, L., FALCIDIENO, B., PIENOVI, C., AND NAG~, G. 1988. On sorting triangles in a Delaunay tessellation. Rep. Inst. Mat. Appl., Consiglio Nazionale della Richerche, Genova, Italy.Google ScholarGoogle Scholar
  85. DEHNE, F., AND KLEIN, R. 1987. An optimal algorithm for computing the Voronoi diagram on a cone. Rep. SCS-TR-122, School Comput. Sci., Carleton Univ., Ottawa, Canada.Google ScholarGoogle Scholar
  86. DEHNE, F., AND NOLTEMEIER, H. 1985. A computational geometry approach to clustering problems. In Proceedings of the 1st Annual ACM Symposium on Computational Geometry. pp. 245-250. Google ScholarGoogle Scholar
  87. DELAUNAY, B. N. 1932. Neue Darstellung der geometrischen Kristallographie. Z. Kristallograph. 84,109-149.Google ScholarGoogle Scholar
  88. DELAUNAY, B. N. 1934. Sur la sphere vide. Bull. Acad. Science USSR VII: Class. Sci. Math., 793-800.Google ScholarGoogle Scholar
  89. DELAUNAY, B. N. 1963. Theorie der regul~iren Dirichletschen Zerlegungen des n-dimensionalen euklidischen Raumes. Schrifienre~he Int. Math. Dtsch. Akad. Wiss. Berlin 13, 27-31.Google ScholarGoogle Scholar
  90. DELAUNAY, B. N., DOLBILIN, N. P., AND STOGRIN, M. I. 1978. Combinatorial and metric theory of planigons. Trudy Mat. Inst. Steklov 148, 109-140.Google ScholarGoogle Scholar
  91. DEWDNEY, A. K. 1977. Complexity of nearest neighbour searching in three and higher dimensions. Rep. 28, Univ. of Western Ontario, London, Ontario.Google ScholarGoogle Scholar
  92. DEWDNEY, A. K., AND VRANCH, J. K. 1977. A convex partition of R3 with applications to Crum's problem and Knuth's post-office problem. Util. Math. 12, 193-199.Google ScholarGoogle Scholar
  93. DILLENCOURT, M. B. 1987a. Traveling salesman cycles are not always subgraphs of Delaunay triangulations. Inf. Process. Lett. 24, 339-342. Google ScholarGoogle Scholar
  94. DILLENCOURT, M. B. 1987b. A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf. Process. Lett. 25, 149-151. Google ScholarGoogle Scholar
  95. DILLENCOURT, M. B. 1987c. Toughness and Delaunay triangulations. In Proceedings of the 3rd Annual ACM Symposium on Computational Geometry. pp. 186-194. Google ScholarGoogle Scholar
  96. DIRICHLET, G. L. 1850. Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Re~ne u. Angew. Math. 40, 209-227.Google ScholarGoogle Scholar
  97. DOBKIN, D. P., AND LASZLO, M. J. 1989. PrimL tives for the manipulation of three-dimensional subdivisions. Algorithmica 4, 3-32.Google ScholarGoogle Scholar
  98. DOBKIN, D. P., AND LmTON, R. J. 1976. Multidimensional searching problems. SIAM J. Comput. 5, 181-186.Google ScholarGoogle Scholar
  99. DOBKIN, D. P., FRIEDMAN, S., AND SUPOWIT, K. 1990. Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom. 5, 399-407. Google ScholarGoogle Scholar
  100. DRYSDALE, R. L. 1990. A practical algorithm for computing the Delaunay triangulation for convex distance functions. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 159-168. Google ScholarGoogle Scholar
  101. DWYER, R. A. 1987. A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 2, 137-151.Google ScholarGoogle Scholar
  102. DWYER, R. A. 1989. Higher-dimensional Voronoi diagrams in linear expected time. In Proceedings of the 5th Annual ACM Symposium on Computational Geometry. pp 326-333. Google ScholarGoogle Scholar
  103. EDAHIRO, M., KOKUBO, I., AND ASANO, T. 1984. A new point-location algorithm and its practical efficiency: Comparison with existing algorithms. ACM Trans. Graph. 3, 86-109. Google ScholarGoogle Scholar
  104. EDELSBRUNNER, H 1986 Edge-skeletons in arrangements with applications. AlgorLthmica 1, 93-109. Google ScholarGoogle Scholar
  105. EDELSBRUNNER, H. 1987. Algorithms in Combinatorial Geometry. Springer, Berlin-Heidelberg. Google ScholarGoogle Scholar
  106. EDELSBRUNNER, a. 1989. An acyclicity theorem for cell complexes in d dimensions. In Proceedings of the 5th Annual ACM Symposium on Computational Geometry. pp. 145-151. Google ScholarGoogle Scholar
  107. EDELSBRUNNER, H., AND MAURER, H. A. 1985. Finding extreme points in three dimensions and solving the post-office problem in the plane. Inf. Process. Lett. 21, 39-47.Google ScholarGoogle Scholar
  108. EDELSBRUNNER, H., AND SEIDEL, R. 1986. Voronoi diagrams and arrangements. Discrete Comput. Geom. 1, 25-44. Google ScholarGoogle Scholar
  109. EDELSBRUNNER, H., AND WELZL, E. 1985. On the number of line separations of a finite set in the plane. J. Combin. Theory Ser. A, 15-29.Google ScholarGoogle Scholar
  110. EDELSBRUNNER, H., GUIBAS, L. J., AND S~A~m, M. 1989. The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311-336.Google ScholarGoogle Scholar
  111. EDELSBRUNNER, H., GUmAS, L. J., STOLFI, J. 1986. Optimal point location in a monotone subdivision. SIAM J. Comput. 15, 317-340. Google ScholarGoogle Scholar
  112. EDELSBRUNNER, H., KIRKPATRICK, D. G., AND SEIDEL, R. 1983. On the shape of a set of points in the plane. IEEE Trans. Inf. Theory IT-29,551-559.Google ScholarGoogle Scholar
  113. EDELSBRUNNER, H., O'RoURKE, J., AND SEIDEL, R. 1986. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Cornput. 15, 341-363. Google ScholarGoogle Scholar
  114. EDELSBRUNNER, H., ROTE, G., AND WELZL, E. 1987. Testing the necklace condition for shortest tours and optimal factors in the plane. Springer LNCS 267, 364-375. Google ScholarGoogle Scholar
  115. EHRLICH, P. E., AND IM HOF, H. C. 1979. Dirichlet regions in manifolds without conjugate points. Comment. Math. Helvet. 54,642-658.Google ScholarGoogle Scholar
  116. EISELT, H. A., AND PEDERZOLI, G. 1986. Voronoi diagrams and their use: A survey. Part I: Theory; Part II: Applications. In S. Goyal, Ed. Proceedings of the ASAC 7, 2. pp. 98-115.Google ScholarGoogle Scholar
  117. ENGEL, P. 1981. 'lJber Wirkungsbereichsteilungen mit kubischer Symmetrie. Z. Kristallograph. 154, 199-215.Google ScholarGoogle Scholar
  118. EPPSTE~N, D. 1990. Finding the k smallest spanning trees. Springer LNCS 447, 38-47. Google ScholarGoogle Scholar
  119. FAIRFIELD, J. 1979. Contoured shape generation: Forms that people see in dot patterns. In Proceedings of the IEEE Conference on Systems Man Cybernetics. pp. 60-64.Google ScholarGoogle Scholar
  120. FAIRFIELD, J. 1983. Segmenting dot patterns by Voronoi diagram concavity. IEEE Trans. Part. Anal. Mach. Int. PAMI-5, 104-110.Google ScholarGoogle Scholar
  121. FEDEROFF, E. S. 1885. Elemente der Lehre yon den Figuren. Verh. Russ Min. Ges. St. Petersburg 21, 1-279.Google ScholarGoogle Scholar
  122. FIELD, D. A. 1986. Implementing Watson's algorithm in three dimensions. In Proceedings of the 2nd Annual ACM Symposium on Computational Geometry. pp. 246-259. Google ScholarGoogle Scholar
  123. FINNEY, J. L. 1979. Procedure for the construction of Voronoi polyhedra. Note. J. Comput. Phys. 32, 137-143.Google ScholarGoogle Scholar
  124. FORTUNE, S. 1985. A fast algorithm for polygon containment by translation. Springer LNCS 194, 189-198. Google ScholarGoogle Scholar
  125. FORTUNE, S. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153-174.Google ScholarGoogle Scholar
  126. FORTUNE, S. 1988. Sorting helps for Voronoi diagrams. Manuscript, ATT Bell Lab., Murray Hill, N.J.Google ScholarGoogle Scholar
  127. FRANK, F. C., AND KASPER, J. S. 1958. Complex alloy structures regarded as sphere packings. Acta Crystallogr. 11,184-190.Google ScholarGoogle Scholar
  128. GABRIEL, K. R, AND SOKAL, R. R. 1969. A new statistical approach to geographic variation analysis. Syst. Zoology 18, 259-278.Google ScholarGoogle Scholar
  129. GAMBINI, R. 1966. A computer program for calculating lines of equilibrium between multiple centers of attraction. Manuscript, Center of Regional Studies, Univ. of Kansas, Lawrence, Kan.Google ScholarGoogle Scholar
  130. GAREY, M. R., GRAHAM, R. L., AND JOHNSON, D. S. 1976. Some NP-complete geometric problems. In Proceedings of the 8th Annual ACM Symposium on STOC. pp. 10-22. Google ScholarGoogle Scholar
  131. GAUSS, C. F. 1840. Recursion der 'Untersuchungen fiber die Eigenschaften der positiven tern~iren quadratischen Formen von Ludwig August Seeber. J. Reine Angew. Math. 20, 312-320.Google ScholarGoogle Scholar
  132. GILBERT, E. N. 1962. Random subdivisions of space into crystals. Ann. Math. Star. 33, 958-972.Google ScholarGoogle Scholar
  133. GOODRICH, M. T., O'DUNLAING, C., AND YAP, C. K. 1989. Constructing the Voronoi diagram of a set of line segments in parallel. Springer LNCS 382, 12-23. Google ScholarGoogle Scholar
  134. GOWDA, I. G., KIRKPATRICK, D. G., LEE, D. T., AND NAAMAD, A. 1983. Dynamic Voronoi diagrams. IEEE Trans. Inf Theory IT-29, 724-731.Google ScholarGoogle Scholar
  135. GREEN, P. J., AND SIBSON, R. 1977. Computing Dirichlet tesselations in the plane. Comput. J. 21, 168-173.Google ScholarGoogle Scholar
  136. GRUBER, P. M., AND LEKKERKERKER, C. G. 1988. Geometry of Numbers. North-Holland Publishing Co., Amsterdam.Google ScholarGoogle Scholar
  137. GRUBER, P. M., AND RYSKOV, S. S. 1987. Facet-tofacet implies face-tofface. Manuscript.Google ScholarGoogle Scholar
  138. GRfiNBAUM, B. 1967. Convex Polytopes. Interscience, New York.Google ScholarGoogle Scholar
  139. GRfJNBAUM, B., AND SHErHARD, G. C. 1980. Tilings with congruent tiles. Bull. Am. Math. Soc. 3, 951-973.Google ScholarGoogle Scholar
  140. GRUNBAUM, B., AND SHEPHARD, G. C. 1987. Tilings and Patterns. Freeman and Co., New York. Google ScholarGoogle Scholar
  141. GUIBAS, L. J., AND STOLFI, J. 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph. 4, 74-123. Google ScholarGoogle Scholar
  142. GUIBAS, L. J., KNUTH, D. E., AND SHARIR, M. 1990. Randomized incremental construction of Delaunay and Voronoi diagrams. Springer LNCS 443, 414-431. Google ScholarGoogle Scholar
  143. GUIBAS, L. J., MITCHELL, J. S. B., AND ROOS, T. 1991. Voronoi diagrams of moving points in the plane. Springer LNCS. In press.Google ScholarGoogle Scholar
  144. HARTIGAN, J. A. 1975. Clustering Algorithms. John Wiley, New York. Google ScholarGoogle Scholar
  145. HEUSINGER, H., AND NOLTEMEIER, H. 1989. On separable clusterings. J. Algorithms 10, 212-227. Google ScholarGoogle Scholar
  146. HINRICHS, K., NIEVERGELT, J., SCHORN, P. 1988a. Plane-sweep solves the closest pair problem elegantly. Inf. Process. Lett. 26, 255-261. Google ScholarGoogle Scholar
  147. HLNRICHS, K., NIEVERGELT, J., SCHORN, P. 1988b. A sweep algorithm for the all-nearestneighbors problem. Springer LNCS 333, 43-54. Google ScholarGoogle Scholar
  148. HORTON, R. E. 1917. Rational study of rainfall data make~ possible bettor estimates of water yield. Eng. News-Record, 211-213.Google ScholarGoogle Scholar
  149. HOWE, S. E. 1978. Estimating regions and clustering spatial data: Analysis and implementation of methods using the Voronoi diagram. Ph.D. dissertation, Brown Univ., Providence, R.I.Google ScholarGoogle Scholar
  150. HUTTENLOCHER, D. P., KEDEM, K., AND SHARIR, M. 1991. The upper envelope of Voronoi surfaces and its applications. In Proceedings of the 7th Annual ACM Symposium on Computational Geometry, 194-203. Google ScholarGoogle Scholar
  151. HWANG, F. K. 1979. An O(nlog n) algorithm for rectilinear minimal spanning trees. J. ACM 26, 177-182. Google ScholarGoogle Scholar
  152. IMAI, H., IRI, M., AND MUROTO, K. 1985. Voronoi diagram in the Laguerre geometry and its applications. SIAM J. Comput. 14, 93-105.Google ScholarGoogle Scholar
  153. IMAI~ K., SUMINO, S., IMAI, H. 1989. Minimax geometric fitting of two corresponding sets of points. In Proceedings of the 5th Annual ACM Symposium on Computational Geometry. pp. 266-275. Google ScholarGoogle Scholar
  154. JOHNSON, W. A., AND MEHL, R. F. 1939. Reaction kinetics in processes of nucleation and growth. Trans. Am. Instit. Mining Metall. A.LM.M.E. 135, 416-458.Google ScholarGoogle Scholar
  155. KANTABUTRA, V. 1983. Traveling salesman cycles are not always subgraphs of Voronoi duals. Inf. Process. Lett. 16, 11-12.Google ScholarGoogle Scholar
  156. KEEL, J. M., AND GUTWIN, C. A. 1989. The Delaunay triangulation closely approximates the complete Euclidean graph. Springer LNCS 382, 47-56. Google ScholarGoogle Scholar
  157. KL~NG, T. 1966. Random fragmentation in two and three dimensions. Z. Astrophysik 64, 433-439.Google ScholarGoogle Scholar
  158. KmKPATRICK, D. G. 1979. Efficient computation of continuous skeletons. In Proceedings of the 20th Annual IEEE Symposium on FOCS. pp. 18-27.Google ScholarGoogle Scholar
  159. KmKPATRICK, D. G. 1980. A note on Delaunay and optimal triangulations. Inf Process. Lett. 10, 127-128.Google ScholarGoogle Scholar
  160. KmKPATRICK, D. G. 1983. Optimal search in planar subdivisions. SIAM J. Comput. 12, 28-35.Google ScholarGoogle Scholar
  161. KLEE, V. 1980. On the complexity of d-dimensional Voronoi diagrams. Archiv Math. 34, 75-80.Google ScholarGoogle Scholar
  162. KLEIN, R. 1989. Concrete and Abstract Voronoi D~agrams. Springer LNCS 400.Google ScholarGoogle Scholar
  163. KLEIN, R., AND WOOD, D. 1988. Voronoi diagrams based on general metrics in the plane. Springer LNCS 294, pp.281-291. Google ScholarGoogle Scholar
  164. KNUTH, D. 1973. The Art of Computer Programming III: Sorting and Searching. Addison- Wesley, Reading, Mass. Google ScholarGoogle Scholar
  165. KocH, E. 1973. Wirkungsbereichspolyeder und Wirkungsbereichsteilungen zu kubischen Gitterkomplexen mit weniger als drei Freiheitsgraden. Z. Kristallograph. 138, 196-215.Google ScholarGoogle Scholar
  166. KOrEC, R. J. 1963. An alternative method for the construction of Thiessen polygons. Professional Geographer 15, 24-26.Google ScholarGoogle Scholar
  167. KUUSKAL, J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Problem. Am. Math. Soc. 7, 48-50.Google ScholarGoogle Scholar
  168. LANTUEJOUL, C., AND MAISONNEUVE, F. 1984. Geodesic methods in quantitative image analysis. Pattern Recogn. 17, 177-187.Google ScholarGoogle Scholar
  169. LAVES, P. 1930. Ebeneneinteilung in Wirkungsbereiche. Z. Kristallograph. 76, 277-284.Google ScholarGoogle Scholar
  170. LAWSON, C. L. 1972. Generation of a triangular grid with applications to contour plotting. Tech. Memorandum 299, California Inst. Tech. Jet Propulsion Lab.Google ScholarGoogle Scholar
  171. LAWSON, C. L. 1977. Software for C1 surface interpolation. In Mathematical Software III, J. Rice Ed., Academic Press, New York.Google ScholarGoogle Scholar
  172. LEE, D. T. 1980. Two-dimensional Voronoi diagrams in the Lp-metric. J. ACM 27, 604-618. Google ScholarGoogle Scholar
  173. LEE, D. T. 1982a. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. C-31,478-487.Google ScholarGoogle Scholar
  174. LEE, D. T. 1982b. Medial axis transform of a planar shape. IEEE Trans. Patt. Anal. Mach. Intell. PAMI-4, 363-369.Google ScholarGoogle Scholar
  175. LEE, D. T., AND DRYSDALE, R. L. 1981. Generalization of Voronoi diagrams in the plane. SIAM J. Comput. 10, 73-87.Google ScholarGoogle Scholar
  176. LEE, D. T., AND LIN, A. K. 1986. Generalized Delaunay triangulation for planar graphs. Discrete Comput. Geom. 1,201-217.Google ScholarGoogle Scholar
  177. LEE, D. T., AND PREPARATA, F. P. 1984. Computational geometry--A survey. IEEE Trans. Cornput. C.33, 12, 1072-1101.Google ScholarGoogle Scholar
  178. LEE, D. T., AND SCHACHTER, B. J. 1980. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9,219-242.Google ScholarGoogle Scholar
  179. LEE, D. T., AND WONG, C. K. 1980. Voronoi diagrams in the Ll(L~) metrics with 2- dimensional storage applications. SIAM J. Comput. 9,200-211.Google ScholarGoogle Scholar
  180. LEE, D. T., AND YANG, C. C. 1979. Location of multiple points in a planar subdivision. Inf. Process. Lett. 9, 190-193.Google ScholarGoogle Scholar
  181. LEVEN, D., AND SnARra, M. 1986. Intersection and proximity problems and Voronoi diagrams. Adv. Robotics 1, 187-228.Google ScholarGoogle Scholar
  182. LEwd, D., AND SHAem, M. 1987. Planning a purely translational motion of a convex robot in two-dimensional space using Voronoi diagrams. Discrete Comput. Geom. 2, 9 31.Google ScholarGoogle Scholar
  183. LINGAS, A. 1986a. The greedy and Delaunay triangulations are not bad in the average case. Inf. Process. Lett. 22, 25-31. Google ScholarGoogle Scholar
  184. LINGAS, A. 1986b. A fast algorithm for the generalized Delauuay triangulation. Manuscript, Univ. of LinkSping, Sweden.Google ScholarGoogle Scholar
  185. LINGAS, A. 1989. Voronoi diagrams with barriers and the shortest diagonal problem. Inf. Process. Lett. 32, 191-198. Google ScholarGoogle Scholar
  186. LINHART, J. 1981. Die Beleuchtung yon Kugeln. Geom. Dedicata 10, 145-154.Google ScholarGoogle Scholar
  187. LITTLE, D. V. 1974. A third note on recent research in geometric probability. Adv. Appl. Probab. 6, 103-130.Google ScholarGoogle Scholar
  188. LOEB, A. L. 1970. A systematic survey of cubic crystal structures. J. Solid State Chem. I, 237-267.Google ScholarGoogle Scholar
  189. MANACHER, G. K., AND ZOBRIST, A. L. 1979. Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation. Inf. Process. Lett. 9, 31-34.Google ScholarGoogle Scholar
  190. MATULA, D. W., AND SOKAL, R. R. 1980. Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane. Geograph. Anal. 12, 205-221.Google ScholarGoogle Scholar
  191. MATZKE, E. B., AND NESTLER, J. 1946. Volumeshape relationships in variant foams. Am. J. Botanics 33, 130-144.Google ScholarGoogle Scholar
  192. MAUS, A. 1884. Delaunay triangulation and the convex hull of n points in expected linear time. BIT 24, 151-163.Google ScholarGoogle Scholar
  193. MAXWELL, J. C. 1864. On reciprocal diagrams and diagrams of forces. Phil. Mag. 4, 27, 250-261.Google ScholarGoogle Scholar
  194. McLAIN, D. H. 1976. Two dimensional interpolation from random data. Comput. J. 19, 178-181.Google ScholarGoogle Scholar
  195. MEGIDDO, N. 1983. Linear time algorithms for linear programming in R3 and related problems. SlAM J. Comput. 12, 759-776.Google ScholarGoogle Scholar
  196. MEHLHORN, K., O'DUNLAING, C., AND MEISER, S. 1990. On the construction of abstract Voronoi diagrams. Springer LNCS 415, 227-239. Google ScholarGoogle Scholar
  197. MEIJERING, J. L. 1953. Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res. Rept. 8, 270-290.Google ScholarGoogle Scholar
  198. MILES, R. E. 1970. On the homogenous planar Poisson process. Math. Biosci. 6. 85-127.Google ScholarGoogle Scholar
  199. MITCHELL, J. S. B., MOUNT, D. M., AND PAPADIMITRIOU, C. H. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 647-668. Google ScholarGoogle Scholar
  200. MOLLISON, D. 1977. Spatial contact models for ecological and epidemic spread. J. Roy. Stat. Soc. B 39,283-326.Google ScholarGoogle Scholar
  201. MONTANARI, U. 1968. A method for obtaining skeletons using a quasLEuclidean distance. J. ACM 15, 600-624. Google ScholarGoogle Scholar
  202. MORAN, P. A. P. 1966. A note on recent research in geometric probability. J. Appl. Probab. 3, 53-463.Google ScholarGoogle Scholar
  203. MORAN, P. A. P. 1969. A second note on recent research in geometrical probability. Adv. Appl. Probab. 1, 73-89.Google ScholarGoogle Scholar
  204. MOUNT, D. M. 1985. Voronoi diagrams on the surface of a polyhedron. Rep. 1496, Univ. of Maryland.Google ScholarGoogle Scholar
  205. MOUNT, D. M. 1986. Storing the subdivision of a polyhedral surface. In Proceedings of the 2nd Annual ACM Symposium on Computational Geometry. pp. 150-158. Google ScholarGoogle Scholar
  206. MOUNT, D., AND SAALFELO, A. 1988. Globallyequiangular triangulation of co-circular points in O(n log n) time. In Proceedings of the 4th Annual ACM Symposium on Computational Geometry. pp. 143-152. Google ScholarGoogle Scholar
  207. MUDER, D. J. 1988a. How big is an n-sided Voronoi polygon? Manuscript, MITRE Corp., Bedford, Mass.Google ScholarGoogle Scholar
  208. MUDER, D. J. 1988b. Putting the best face on a Voronoi polyhedron. Proc. London Math. Soc. 56, 329-348.Google ScholarGoogle Scholar
  209. MULMULEY, K. 1991. On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom. In press. Google ScholarGoogle Scholar
  210. MURTADH, F. 1983. A survey of recent advances in hierarchical clustering algorithms. Computer J. 26, 354-359.Google ScholarGoogle Scholar
  211. NEWMAN, C. M., RINOTT, Y., AND TVE~SKY, A. 1983. Nearest neighbor and Voronoi regions in certain point processes. Adv. Appl. Probab. 15, 726-751.Google ScholarGoogle Scholar
  212. NIGGLI, R. 1927. Die topologische Strukturanalyse. Z. KristaUograph. 65, 391-415.Google ScholarGoogle Scholar
  213. NOWACKI, W. 1933. Der Begriff 'Voronoischer Bereich'. Z. Kristallograph. 85, 331-332.Google ScholarGoogle Scholar
  214. NOWACKI, W. 1976. Uber allgemeine Eigenschaften von Wirkungsbereichen. Z. KristaUograph. 143, 360-368.Google ScholarGoogle Scholar
  215. O'DUNLAING, C., AND YAP, C. K. 1985. A "retraction'' method for planning the motion of a disc. J. Algorithms 6, 104-111.Google ScholarGoogle Scholar
  216. O'DUNLAING, C., SHARIR, M., AND YAP, C. K. 1986. Generalized Voronoi diagrams for moving a ladder: I. Topological analysis. Comm. Pure Appl. Math. 39,423-483.Google ScholarGoogle Scholar
  217. O'DUNLAING, C., SHARm, M., AND YAP, C. K. 1987. Generalized Voronoi diagrams for moving a ladder: II. Efficient construction of the diagram. Algorithmica 2, 27-59.Google ScholarGoogle Scholar
  218. OHYA, T., IRI, M., AND MUROTA, K. 1984a. A fast Voronoi diagram algorithm with quaternary tree bucketing. Inf. Process. Lett. 18, 227-231. Google ScholarGoogle Scholar
  219. OHYA, T., IRI, M., AND MUROTA, K. 1984b. Improvements of the incremental methods for the Voronoi diagram with computational comparison of various algorithms. J. Operations Res. Soc. Japan 27, 306-337.Google ScholarGoogle Scholar
  220. OKABE, A., YOSHIKAWA, T., FUJII, A., AND OIKAWA, K. 1988. The statistical analysis of a distribution of active points in relation to surface-like elements. Environ. Plan. A 20, 609-620.Google ScholarGoogle Scholar
  221. OVERMARS, M. 1981. Dynamization of order decomposable set problems. J. Algorithms 2, 245-260.Google ScholarGoogle Scholar
  222. PACH, J., AND SHARIR, M. 1989. The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates. Discrete Comput. Geom. 4,291-310.Google ScholarGoogle Scholar
  223. PAPADTMITRIOU, C. H. 1977. The Euclidean traveling salesman problem is NP-complete. Theor. Comp. Sci. 4,237-244.Google ScholarGoogle Scholar
  224. PASCHINGER, I. 1982. Konvexe Polytope und Dirichletsche Zellenkomplexe. Ph.D. Dissertation, Inst. f, Math., Univ. Salzburg, Austria.Google ScholarGoogle Scholar
  225. PmLBRICK, 0. 1968. Shape recognition with the medial axis transform. In P~ctorial Pattern Reeognitwn, G. C. Cheng, R. S. Ledley, D. K Pollock, and A. Rosenfeld, Eds. Washington, D.C.Google ScholarGoogle Scholar
  226. PRErARATA, F. P. 1977. Steps into computational geometry. Rep. R-760, Coordinated Science Lab., Univ. of Illinois, Urbana, Ill., pp, 23-24.Google ScholarGoogle Scholar
  227. PRErARATA, F. P., AND HONG, S. J. 1977. Convex hulls of finite sets of points in two and three dimensions. Commun. ACM 20, 87-93, Google ScholarGoogle Scholar
  228. PREPARATA, F. P., AND SHAMOS, M. I. 1985. Computational Geometry: An Introduction. Springer, New York. Google ScholarGoogle Scholar
  229. PRIM, R. C. 1957. Shortest connection networks and some generalizations Bell Syst. Tech. J. 36, 1389-1401.Google ScholarGoogle Scholar
  230. RAJAN, V. T. 1991. Optimality of the Delaunay triangulation in Ra. In Proceedings of the 7th Annual ACM Symposium on Computational Geometry, pp. 357-372. Google ScholarGoogle Scholar
  231. RHYNSBURGER, D. 1973. Analytical delineation of Thiessen polygons. Geograph. Anal. 5, 133-144.Google ScholarGoogle Scholar
  232. RmrA, S. 1990. Minimal roughness property of the Delaunay triangulation. Comput. Aided Geom. Design 7, 489-497. Google ScholarGoogle Scholar
  233. ROGERS, C. A. 1964. Packing and Covering. Cambridge University Press, London, New York.Google ScholarGoogle Scholar
  234. ROHNERT, H. 1988. Moving discs between polygons. Springer LNCS 317, 502-515. Google ScholarGoogle Scholar
  235. ROSENBERCER, H. 1988. Order-k Voronoi diagrams of sites with additive weights in the plane. Rep. UIUCDCS-R-88-1431, Dept. Cornput. Sci., Univ. Illinois, Urbana, Ill.Google ScholarGoogle Scholar
  236. ROSENKRANTZ, D. J., STEARNS, R. E., AND LEWm, P. M. 1977. An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563-581.Google ScholarGoogle Scholar
  237. ROWAT, P. F. 1979. Representing spatial experience and solving spatial problems in a simulated robot environment. Ph.D. dissertation, Univ. of British Columbia, Canada. Google ScholarGoogle Scholar
  238. SAI<AMOTO, M., AND TAKAGI, M. 1988. Patterns of weighted Voronoi tessellations. Sct. Form 3, 103-111.Google ScholarGoogle Scholar
  239. SCH()NFLIES, A. 1891. Kristallsysteme und Kirstallstruktur. Teubner, Leipzig.Google ScholarGoogle Scholar
  240. SCHWARTZ, J., AND YAP, C. K. 1986. Advances in Robotics. Lawrence Erlbaum Associates, Hillside, N.J.Google ScholarGoogle Scholar
  241. SCHWARZKOPF, O. 1989. Parallel computation of discrete Voronoi diagrams. Springer LNCS 349, 193-204. Google ScholarGoogle Scholar
  242. SEIDEL, R. 1981. A convex hull algorithm optimal for point sets in even dimensions. Rep. 81-14, Univ. of Britmh Columbia, Vancouver, Canada. Google ScholarGoogle Scholar
  243. SEIDEL, R. 1982 The complexity of Voronoi diagrams in higher dimensions. In Proceedings of the 20th Annual Allerton Conference on CCC. pp. 94-95.Google ScholarGoogle Scholar
  244. SEIDEL, R. 1985 A method for proving lower bounds for certain geometric problems. In Computational Geometry, G. T. Toussaint Ed. pp. 319-334.Google ScholarGoogle Scholar
  245. SEIDEL, R. 1986. Constructing higher-dimensional convex hulls at logarithmic cost per face. In Proceedings of the 18th Annual ACM Symposium on STOC. pp. 404-413. Google ScholarGoogle Scholar
  246. SEmEL, R. 1987. On the number of faces in higher-dimensional Voronoi diagrams. In Proceedings of the 3rd Annual Symposium on Computational Geometry. pp. 181-185. Google ScholarGoogle Scholar
  247. SEIDEL, R. 1988. Constrained Delaunay triangulations and Voronoi diagrams with obstacles. In Rep. 260, IIG-TU Graz, Austria, pp. 178-191.Google ScholarGoogle Scholar
  248. SHAMOS, M. I. 1975. Geometric complexity. In Proceedings of the 7th Annual ACM Symposium on STOC. pp. 224-233. Google ScholarGoogle Scholar
  249. SRAMOS, M. I. 1978. Computational geometry. Ph.D. dissertation, Yale Univ., New Haven, Conn. Google ScholarGoogle Scholar
  250. SR^MOS, M. I., AND HOEY, D. 1975. Closest-point problems. In Proceedings of the 16th Annual IEEE Symposium on FOCS pp. 151-162.Google ScholarGoogle Scholar
  251. SHARm, M. 1985. Intersection and closest-pair problems for a set of planar discs. SIAM J. Comput. 14,448-468.Google ScholarGoogle Scholar
  252. SmsoN, R. 1977. Locally equiangular triangulations. Comput. J. 21,243-245.Google ScholarGoogle Scholar
  253. SmsoN, R. 1979. The Dirichlet tessellation as an aid in data analysis. Scandinavian J. Stat. 7, 14-20.Google ScholarGoogle Scholar
  254. SmsoN, R. 1980. A vector identity for the Dlrichlet tessellation. Math. Proc. Camb. Phil. Soc. 87, 151-155.Google ScholarGoogle Scholar
  255. SIFRONY, S., AND SHARIR, M. 1986. A new efficient motion-planning algorithm for a rod in polygonal space. In Proceedings of the 2nd Annual ACM Symposium on Computational Geometry. pp. 178-186. Google ScholarGoogle Scholar
  256. SMITH, C. S. 1954. The shape of things. Sci. Am. 58-64.Google ScholarGoogle Scholar
  257. SNYDEe, D. E. 1962. Urban places in Uruguay and the concept of a hierarchy. Festschrift: C. F. Jones. Northwestern University Studies in Geography 6, 29-46.Google ScholarGoogle Scholar
  258. STIFTER, S. 1989. An axiomatic approach to Voronoi diagrams in 3D. Manuscript, RISC, Univ. of Linz, Austria.Google ScholarGoogle Scholar
  259. SUGISARA, K., AND IRI, M. 1988. Geometric algorithms in finite-precision arithmetic. Research Memorandum RMI 88-10, Faculty of Engineering, Univ. of Tokyo, Japan.Google ScholarGoogle Scholar
  260. SuPowiT, K. J. 1983. The relative neighborhood graph, with an application to minimum spanning trees. J. ACM 30,428-448. Google ScholarGoogle Scholar
  261. SUZUKI, A., AND IRL M. 1986. Approximation of a tessellation of the plane by a Voronoi diagram. J. Operations Res. Soc. Japan 29, 69-96.Google ScholarGoogle Scholar
  262. TANEMURA, M., OGAWA, T., AND OGITA, N. 1983. A new algorithm for three-dimensional Voronoi tessellation. J. Comput. Phys. 51,191-207.Google ScholarGoogle Scholar
  263. T~SKI, A. 1951. A decision method for elementary algebra and geometry. Univ. of California Press, Berkeley, Calif.Google ScholarGoogle Scholar
  264. THmSSEN, A. H. 1911. Precipitation average for large area. Monthly Weather Rev. 39, 1082-1084.Google ScholarGoogle Scholar
  265. TOKUYAMA, T. 1988. Deformation of merged Voronoi diagrams with translation. Rep. TR- 88-0049, IBM Tokyo Research Lab.Google ScholarGoogle Scholar
  266. TOUSSA~NT, G. T. 1980. The relative neighborhood graph of a finite planar set. Pattern Recogn. 12, 261-268.Google ScholarGoogle Scholar
  267. TOUSSAINT, G. T., ANn BHATTACHARYA, B. K. 1981. On geometric algorithms that use the furthestpoint Voronoi diagram. Rep. 81-3, McGill Univ., Montreal, Quebec, Canada.Google ScholarGoogle Scholar
  268. TUOMIN~N, O. 1949. Das EinfiuBgebeit der Stadt Turku ins System der Einfiuflgebiete SW--Finnlands. Fennia 71-5, 1-138.Google ScholarGoogle Scholar
  269. URQUHART, R. 1980. A note on the computation of subgraphs of the Delaunay triangulation. Rep., Univ. of Glasgow, U.K.Google ScholarGoogle Scholar
  270. V~OYA, P. M. 1988a. Minimum spanning trees in k-dimensional space. SIAM J. Comput. 17, 572-582. Google ScholarGoogle Scholar
  271. VAIDYA, P. M. 1988b. Geometry helps in matching. In Proceedings of the 20th Annual ACM Symposium on STOC. pp. 422-425. Google ScholarGoogle Scholar
  272. VORONOI, M. G. 1908. Nouvelles applications des parametres continus a la theorie des formes quadratiques. J. Reine Angew. Math. 134, 198-287.Google ScholarGoogle Scholar
  273. WANG, C. A., AND SCHUBERT, L. 1987. An optimal algorithm for constructing the Delaunay triangulation of a set of line segments. In Proceedings of the 3rd Annual ACM Symposium on Computational Geometry. pp. 223-232. Google ScholarGoogle Scholar
  274. WATSON, D. F. 1981. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 24, 167-172.Google ScholarGoogle Scholar
  275. WEAmE, D., ANn RWmR, N. 1984. Soap, cells, and statistics--random patterns in two dimensions. Contemp. Phys. 25, 59-99.Google ScholarGoogle Scholar
  276. WmTELEY, W. 1979. Realizability of polyhedra. Structural Topol. 1, 46-58.Google ScholarGoogle Scholar
  277. WmMEIER, P., Wu, Y. F., AND WONG, C. K. 1987. On some distance problems in fixed orientations. SIAM J. Comput. 16, 728-746. Google ScholarGoogle Scholar
  278. WIGNER, E., AND SEITZ, F. 1933. On the constitution of metallic sodium. Phys. Rev. 43, 804-810.Google ScholarGoogle Scholar
  279. WmLIAMS, R. E. 1968. Space-filling polyhedron: Its relation to aggregates of soap bubbles, plant cells, and metal crystalites. Science 161, 276-277.Google ScholarGoogle Scholar
  280. YAO, A. C. 1975. An O(E log log V) algorithm for finding minimum spanning trees. Inf. Process. Lett. 4, 21-23.Google ScholarGoogle Scholar
  281. YAO, A. C. 1982. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 11,721-736.Google ScholarGoogle Scholar
  282. YAP, C. K. 1987. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput. Geom. 2, 365-393.Google ScholarGoogle Scholar

Index Terms

  1. Voronoi diagrams—a survey of a fundamental geometric data structure

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader