skip to main content
10.1145/1185657.1185730acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Fluid simulation: SIGGRAPH 2006 course notes (Fedkiw and Muller-Fischer presenation videos are available from the citation page)

Published:30 July 2006Publication History

ABSTRACT

These course notes are designed to give you a practical introduction to fluid simulation for graphics. The field of fluid dynamics, even just in animation, is vast and so not every topic will be covered. The focus of these notes is animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to actual implementation. However, we will include a small amount of material on heightfield simplifications which are important for real-time animation.In general the approach is to make things as simple as possible, but no simpler. Constructing a fluid solver for computer animation is not the easiest thing in the world--there end up being a lot of little details that need attention-- but is perhaps easier than it may appear from surveying the literature. We will also provide pointers to some more advanced topics here and there.

Skip Supplemental Material Section

Supplemental Material

References

  1. {Asl04} Tariq D. Aslam. A partial differential equation approach to multidimensional extrapolation. J. Comp. Phys., 193:349--355, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {Bat67} G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.Google ScholarGoogle Scholar
  3. {BB06} Christopher Batty and Robert Bridson. Accurate irregular boundaries in fluid simulation. In preparation, 2006.Google ScholarGoogle Scholar
  4. {BR86} J. U. Brackbill and H. M. Ruppel. FLIP: a method for adaptively zoned, particle-in-cell calculuations of fluid flows in two dimensions. J. Comp. Phys., 65:314--343, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {Cor05} Richard Corbett. Point-based level sets and progress towards unorganised particle based fluids. Master's thesis, UBC Dept. Computer Science, 2005.Google ScholarGoogle Scholar
  6. {EFFM02} D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for improved interface capturing. J. Comp. Phys., 183:83--116, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {EMF02} Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and rendering of complex water surfaces. ACM Trans. Graph. (Proc. SIGGRAPH), 21(3):736--744, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {FF01} Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proc. SIGGRAPH, pages 23--30, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {FR86} A. Fournier and W. T. Reeves. A simple model of ocean waves. In Proc. SIGGRAPH, pages 75--84, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {FSJ01} R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of smoke. In Proc. SIGGRAPH, pages 15--22, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {GBO04} Tolga G. Goktekin, Adam W. Bargteil, and James F. O'Brien. A method for animating viscoelastic fluids. ACM Trans. Graph. (Proc. SIGGRAPH), 23:463--468, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {GFCK02} F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comp. Phys., 176:205--227, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {Har63} F. H. Harlow. The particle-in-cell method for numerical solution of problems in fluid dynamics. In Experimental arithmetic, high-speed computations and mathematics, 1963.Google ScholarGoogle Scholar
  14. {HBW03} Ben Houston, Chris Bond, and Mark Wiebe. A unified approach for modeling complex occlusions in fluid simulations. In ACM SIGGRAPH Technical Sketches, 2003 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {HK05} Jeong-Mo Hong and Chang-Hun Kim. Discontinuous fluids. ACM Trans. Graph. (Proc. SIGGRAPH), 24:915--920, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {HNB+06} Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken Museth. Hierarchical rle level set: A compact and versatile deformable surface representation. ACM Trans. Graph., 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {HNC02} D. Hinsinger, F. Neyret, and M.P. Cani. Interactive animation of ocean waves. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., pages 161--166, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {HW65} F. Harlow and J. Welch. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Phys. Fluids, 8:2182--2189, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  19. {JBS06} M. Jones, A. Baerentzen, and M. Sramek. 3D distance fields: A survey of techniques and applications. IEEE Trans. Vis. Comp. Graphics, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {Jef03} A. Jeffrey. Applied Partial Differential Equations. Academic Press, 2003.Google ScholarGoogle Scholar
  21. {LGF04} F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (Proc. SIGGRAPH), 23:457--462, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. {MCG03} Matthias Muller, David Charypar, and Markus Gross. Particle-based fluid simulation for interactive applications. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., pages 154--159, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. {Mon92} J. J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys., 30:543--574, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  24. {NFJ02} Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically based modeling and animation of fire. ACM Trans. Graph. (Proc. SIGGRAPH), pages 721--728, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. {OF02} S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, 2002. New York, NY.Google ScholarGoogle Scholar
  26. {OH95} J. O'Brien and J. Hodgins. Dynamic simulation of splashing fluids. In Computer Animation, pages 198--205, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {PTB+03} Simon Premoze, Tolga Tasdizen, James Bigler, Aaron Lefohn, and Ross Whitaker. Particle--based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), volume 22, pages 401--410, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  28. {REN+04} N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. Directible photorealistic liquids. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., pages 193--202, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. {Set96} J. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci., 93:1591--1595, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  30. {SRF05} Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (Proc. SIGGRAPH), pages 910--914, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {Sta99} Jos Stam. Stable fluids. In Proc. SIGGRAPH, pages 121--128, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. {Tsa02} Yen-Hsi Richard Tsai. Rapid and accurate computation of the distance function using grids. J. Comput. Phys., 178(1):175--195, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. {Tsi95} J. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control, 40:1528--1538, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  34. {WMT05} Huamin Wang, Peter J. Mucha, and Greg Turk. Water drops on surfaces. ACM Trans. Graph. (Proc. SIGGRAPH), pages 921--929, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. {ZB05} Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Trans. Graph. (Proc. SIGGRAPH), pages 965--972, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. {Zha05} Hongkai Zhao. A fast sweeping method for Eikonal equations. Math. Comp., 74:603--627, 2005.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Fluid simulation: SIGGRAPH 2006 course notes (Fedkiw and Muller-Fischer presenation videos are available from the citation page)

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '06: ACM SIGGRAPH 2006 Courses
            July 2006
            83 pages
            ISBN:1595933646
            DOI:10.1145/1185657

            Copyright © 2006 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 July 2006

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader