skip to main content
article

Estimating network proximity and latency

Published:05 July 2006Publication History
Skip Abstract Section

Abstract

Network proximity and latency estimation is an important component in discovering and locating services and applications. With the growing number of services and service providers in the large-scale Internet, accurately estimating network proximity/latency with minimal probing overhead becomes essential for scalable deployment. Although there exist a number of network distance estimation schemes, they either rely on extensive infrastructure support, require the IP address of the potential targets, falsely cluster distant nodes, or perform poorly with even few measurement errors. We propose Netvigator, a scalable network proximity and latency estimation tool that uses information obtained from probing a small number of landmark nodes and intermediate routers (termed milestones) that are discovered en route to the landmarks, to identify the closest nodes. With very little additional probing overhead, Netvigator uses distance information to the milestones to accurately locate the closest nodes. We developed a Netvigator prototype and report our performance evaluation on PlanetLab and in the intranet of a large enterprise. Netvigator is a running service on PlanetLab as a part of HP Labs' S3 (Scalable Sensing Service).

References

  1. S. Banerjee, M. Pias, and T. Griffin. The interdomain connectivity of planetlab nodes. In Proceedings of the PAM 2004.Google ScholarGoogle ScholarCross RefCross Ref
  2. Chariot, http://www.netiq.com/products/chr/default.asp.Google ScholarGoogle Scholar
  3. Y. Chen, K. H. Lim, R. H. Katz, and C. Overton. On the stability of network distance estimation. ACM Performance Evaluation Review, 30(2):21--30, September 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical internet coordinates for distance estimation. In Proceedings of the IEEE ICDCS 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordinate system. In Proceedings of the ACM SIGCOMM 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Fonseca, P. Sharma, S. Banerjee, S.-J. Lee, and S. Basu. Distributed querying of internet distance information. In Proceedings of the 8th IEEE Global Internet Symposium, Miami, FL, March 2005.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. IDMaps: A global internet host distance estimation service. IEEE/ACM Trans. Networking, 9(5):525--540, October 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between arbitrary internet end hosts. In Proceedings of the ACM IMW 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and accurate network coordinates. In Proceedings of the IEEE ICDCS 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. Lim, J. C. Hou, and C.-H. Choi. Constructing internet coordinate system based on delay measurement. In Proceedings of the ACM IMC 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. S. E. Ng and H. Zhang. Predicting Internet network distance with coordinates-based approaches. In Proceedings of the IEEE INFOCOM 2002.Google ScholarGoogle ScholarCross RefCross Ref
  12. T. S. E. Ng and H. Zhang. A network positioning system for the internet. In Proceedings of USENIX Annual Technical Conference, Boston, MA, June 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Lighthouses for scalable distributed location. In Proceedings of the IPTPS 2003.Google ScholarGoogle ScholarCross RefCross Ref
  14. PlanetLab, http://www.planet-lab.org.Google ScholarGoogle Scholar
  15. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware overlay construction and server selection. In Proceedings of the IEEE INFOCOM, New York, NY, June 2002.Google ScholarGoogle ScholarCross RefCross Ref
  16. s3 scalable sensing service, http://networking.hpl.hp.com/s-cube/PL.Google ScholarGoogle Scholar
  17. Scriptroute, http://www.cs.washington.edu/research/networking/scriptroute.Google ScholarGoogle Scholar
  18. Y. Shavitt, X. Sun, A. Wool, and B. Yener. Computing the unmeasured: An algebraic approach to internet mapping. IEEE J. Select. Areas Commun., 22(1):67--78, January 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Shavitt and T. Tankel. Big-bang simulation for embedding network distance in euclidean space. In Proceedings of the IEEE INFOCOM 2003.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. Srinivasan and E. Zegura. M-coop: A scalable infrastructure for network measurement. In Proceedings of the IEEE WIAPP 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-organizing semantic overlay networks. In Proceedings of the ACM SIGCOMM, Karlsruhe, Germany, August 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Tang and M. Crovella. Virtual landmarks for the internet. In Proceedings of the ACM IMC, Miami Beach, FL, October 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. W. Theilmann and K. Rothermel. Dynamic distance maps of the Internet. In Proceedings of the IEEE INFOCOM 2000.Google ScholarGoogle ScholarCross RefCross Ref
  24. L. w. Lehman and S. Lerman. PCoord: Network position estimation using peer-to-peer measurements. In Proceedings of the IEEE NCA 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network. In Proceedings of the ACM HotNets-I.Google ScholarGoogle Scholar
  26. B. Wong, A. Slivkins, and E. Sirer. Meridian: A lightweight network location service without virtual coordinates. In Proceedings of the ACM SIGCOMM, Philadelphia, PA, August 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Z. Xu, P. Sharma, S.-J. Lee, and S. Banerjee. Netvigator: Scalable network proximity estimation. Technical Report HPL-2004-28R1, HP Laboratories, March 2005.Google ScholarGoogle Scholar
  28. H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet routing policies and round-trip-times. In Proceedings of the PAM 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Estimating network proximity and latency

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM SIGCOMM Computer Communication Review
              ACM SIGCOMM Computer Communication Review  Volume 36, Issue 3
              July 2006
              97 pages
              ISSN:0146-4833
              DOI:10.1145/1140086
              Issue’s Table of Contents

              Copyright © 2006 Authors

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 5 July 2006

              Check for updates

              Qualifiers

              • article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader