skip to main content
article

Limits on the ability of quantum states to convey classical messages

Authors Info & Claims
Published:01 January 2006Publication History
Skip Abstract Section

Abstract

We revisit the problem of conveying classical messages by transmitting quantum states, and derive new, optimal bounds on the number of quantum bits required for this task. Much of the previous work on this problem, and on other communication tasks in the setting of bounded error entanglement-assisted communication, is based on sophisticated information theoretic arguments. Our results are derived from first principles, using a simple linear algebraic technique. A direct consequence is a tight lower bound for the Inner Product function that has found applications to privacy amplification in quantum key distribution protocols.

References

  1. Ambainis, A., Nayak, A., Ta-Shma, A., and Vazirani, U. 2002. Dense quantum coding and quantum finite automata. J. ACM 49, 4 (July), 1--16.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ambainis, A., Schulman, L. J., Ta-Shma, A., Vazirani, U., and Wigderson, A. 2003. Quantum communication complexity of sampling. SIAM J. Comput. 32, 1570--1585.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bar-Yossef, Z., Jayram, T. S., and Kerenidis, I. 2004. Exponential separation of quantum and classical one-way communication complexity. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing. ACM, New York, 128--137.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ben-Or, M. 1999. Simple security proof for quantum key distribution. Unpublished. (See talk given during the MSRI special semester on quantum computation in 2002: http://www.msri.org/publications/ln/msri/2002/qip/ben-or/1/index.html.)]]Google ScholarGoogle Scholar
  5. Bennett, C. H., and Brassard, G. 1984. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing. IEEE Computer Society, Press, Los Alamitos, CA, 175.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and Wootters, W. K. 1993. Teleporting an unknown quantum state via dual classical and Einstein--Podolsky--Rosen channels. Phys. Rev. Lett. 70, 1895--1899.]]Google ScholarGoogle ScholarCross RefCross Ref
  7. Bennett, C. H., and Shor, P. W. 1998. Quantum information theory. IEEE Trans. Inf. Theory IT-44, 6, 2724--2742.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bennett, C. H., and Wiesner, S. J. 1992. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881--2884.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. Bernstein, E., and Vazirani, U. V. 1997. Quantum complexity theory. SIAM J. Comput. 26, 5, 1411--1473.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Buhrman, H., Cleve, R., and Wigderson, A. 1998. Quantum vs. classical communication and computation. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing. ACM Press, New York, 63--68.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Buhrman, H., and de Wolf, R. 2001. Communication complexity lower bounds by polynomials. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity. IEEE Press, Los Alamitos, CA, 120--130.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cleve, R., and Buhrman, H. 1997. Substituting quantum entanglement for communication. Phys. Rev. A 56, 2, 1201--1204.]]Google ScholarGoogle ScholarCross RefCross Ref
  13. Cleve, R., van Dam, W., Nielsen, M., and Tapp, A. 1998. Quantum entanglement and the communication complexity of the inner product function. In Quantum Computing and Quantum Communications, Proceedings of the 1st NASA International Conference. Lecture Notes in Computer Science, vol. 1509. Springer-Verlag, Heidelberg, Germany, 61--74.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cover, T. M., and Thomas, J. A. 1991. Elements of Information Theory. Wiley Series in Telecommunications. Wiley, New York.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. de Wolf, R. 2005. Lower bounds on matrix rigidity via a quantum argument. Tech. rep., Arxiv.org Preprint Archive. (Available at http://www.arxiv.org/abs/quant-ph/0505188.)]]Google ScholarGoogle Scholar
  16. Goldreich, O. 1995. Three XOR-lemmas---An exposition. Tech. Rep. TR95-056, Electronic Colloquium on Computational Complexity. (Available at http://eccc.uni-trier.de/eccc/.)]]Google ScholarGoogle Scholar
  17. Holevo, A. 1973. Some estimates of the information transmitted by quantum communication channels. Prob. Inf. Trans. 9, 3, 177--183. (Russian version in Problemy Peredachi Informatsii 9 (1973), 3--11.)]]Google ScholarGoogle Scholar
  18. Kerenidis, I., and de Wolf, R. 2004. Exponential lower bound for 2-query locally decodable codes. J. Comput. Syst. Sci. 69, 3, 395--420. (Special issue for STOC 2003.)]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Klauck, H. 2000. On quantum and probabilistic communication: Las Vegas and one-way protocols. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. ACM, New York, 644--651.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Klauck, H. 2001a. Lower bounds for quantum communication complexity. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 288--297.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Klauck, H. 2001b. One-way communication complexity and the Neciporuk lower bound on formula size. Tech. rep., Arxiv.org Preprint Archive. (Available at http://www.arxiv.org/abs/cs.CC/0111062.)]]Google ScholarGoogle Scholar
  22. Klauck, H., Nayak, A., Ta-Shma, A., and Zuckerman, D. 2001. Interaction in quantum communication and the complexity of Set Disjointness. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. ACM, New York, 124--133.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kremer, I. 1995. Quantum communication. M.S. thesis, The Hebrew University of Jerusalem, Jerusalem, Israel.]]Google ScholarGoogle Scholar
  24. Kushilevitz, E., and Nisan, N. 1997. Communication Complexity. Cambridge University Press, Cambridge, UK.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lo, H.-K., and Chau, H. F. 1997. Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410--3413.]]Google ScholarGoogle ScholarCross RefCross Ref
  26. Mayers, D. 1997. Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 17, 3414--3417.]]Google ScholarGoogle ScholarCross RefCross Ref
  27. Nayak, A. 1999. Lower bounds for quantum computation and communication. Ph.D. thesis, University of California, Berkeley.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nielsen, M. A., and Chuang, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Preskill, J. 1998. Quantum computation. Lecture Notes, available at http://www.theory.caltech.edu/people/preskill/ph229/, California Institute of Technology, Pasadena, CA.]]Google ScholarGoogle Scholar
  30. Raz, R. 1999. Exponential separation of quantum and classical communication complexity. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing. ACM, New York, 358--367.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Raz, R. 2005. Quantum information and the PCP theorem. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 459--468.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Razborov, A. 2003. Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics 67, 1, 145--159. (Russian version in Izvestiya Rossiiskoi Academii Nauk (seriya matematicheskaya) 67 (2003), 1, 159--176.)]]Google ScholarGoogle Scholar
  33. van Dam, W., and Hayden, P. 2002. Renyi-entropic bounds on quantum communication. Tech. rep., Arxiv.org Preprint Archive. Available at http://www.arxiv.org/abs/quant-ph/0204093.]]Google ScholarGoogle Scholar
  34. Yao, A. C.-C. 1993. Quantum circuit complexity. In Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 352--361.]]Google ScholarGoogle Scholar

Index Terms

  1. Limits on the ability of quantum states to convey classical messages

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader