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Skip Abstract SectionAbstract

Disk I/O is increasingly the performance bottleneck in computer systems despite rapidly increasing disk data transfer rates. In this article, we propose Automatic Locality-Improving Storage (ALIS), an introspective storage system that automatically reorganizes selected disk blocks based on the dynamic reference stream to increase effective storage performance. ALIS is based on the observations that sequential data fetch is far more efficient than random access, that improving seek distances produces only marginal performance improvements, and that the increasingly powerful processors and large memories in storage systems have ample capacity to reorganize the data layout and redirect the accesses so as to take advantage of rapid sequential data transfer. Using trace-driven simulation with a large set of real workloads, we demonstrate that ALIS considerably outperforms prior techniques, improving the average read performance by up to 50% for server workloads and by about 15% for personal computer workloads. We also show that the performance improvement persists as disk technology evolves. Since disk performance in practice is increasing by only about 8% per year, the benefit of ALIS may correspond to as much as several years of technological progress.
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        Based on the observation that sequential data fetch is more efficient than random access, the authors propose automatic techniques and heuristics to physically reorganize disk blocks. 
Three heuristics are explained in great detail and evaluated with the help of trace-driven simulations. The heuristics are heat clustering, run clustering, and a combination of both. The heat heuristic locates hot spots on the disk and copies the blocks from those spots to adjacent locations. The run heuristic is based on the observation that some workloads contain long read sequences that are often repeated, these sequences are likewise copied to adjacent locations. All three heuristics are fully analyzed and evaluated for two different storage systems. 
Two real-life workloads provide input to the simulation: one contains traces from 14 personal computers from different types of users, and the other contains traces from three servers (a file server, a time-sharing system, and a database server). The simulation is divided into two steps: "collect data and apply heuristics," and production. Performance data is collected on the production step and indicates different results for different workloads. Average read response times vary from negative to improvements of up to 50 percent. 
There is, however, no data on the overhead incurred by the system during the block reorganization step, which is assumed to cost very little and be completed during the system's idle time.
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        Modern data is stored in a hierarchical structure: register, level 1 cache, level 2 cache, main memory, and hard disk. A hard disk has the largest storage capacity, but also has the poorest performance in terms of data read and write (I/O). A significant research effort has been made to resolve this performance bottleneck. 
Part of the research effort is in improving the data locality on the disk. The value of improving data locality is based on this general observation: related data items are intended to operate together. Thus, it can be easily seen that if, when the system transfers the requested data item to the processing unit from the disk, it also loads (prefetches) the related data items to a faster storage system (say, the level 2 cache), then there may be a good chance that in the next command cycle the processing unit will get what it wants from the level 2 cache, rather than from the disk, and the I/O speed will improve. Certainly, prefetching will be more effective if the related data items are stored as close as possible. In other words, by improving data locality, it can be expected that the I/O performance will be improved. 
To design a scheme for improving data locality, it is important to correctly identify the relation among the data items, if such a relation exists. The authors of this paper point out that, in many cases, related data items are not only accessed in a short time period, but also in a predictable order. Hence, they argue, the related data items should be laid out not only spatially close to each other, but also in the original order. The authors believe this latter point is, to a large extent, more important than the first. This is the paper's main contribution-previous disk data locality researchers have merely tried to store the related data items spatially close to each other and often break the original order. 
Based on this idea, the authors design a system that may automatically improve the data locality on the disks. The authors test their system using a software simulator driven by some actual disk workload records. 
Although the authors demonstrate some promising results, their conclusion that the system can improve disk I/O significantly, in general, lacks support. An obvious reason is that, in many cases, there may not be any relations among the data items. Also, it is quite common that the order of accessing related data items is not predictable. 
The disk workload traces the authors test are all from office computers used by professionals. The results would have been more valuable if the authors had tested some traces recorded in household personal computers, which comprise the majority of the total computers in the world.
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