skip to main content
article

Low-complexity maximum intensity projection

Published:01 October 2005Publication History
Skip Abstract Section

Abstract

Many techniques have already been proposed to improve the efficiency of maximum intensity projection (MIP) volume rendering, but none of them considered the possible hypothesis of a better complexity than either O(n) for finding the maximum value of n samples along a ray or O(n3) for an object-order algorithm. Here, we fully model and analyze the use of octrees for MIP, and we mathematically show that the average MIP complexity can be reduced to O(n2) for an object-order algorithm, or to O(log(n)) per ray when using the image-order variant of our algorithm. Therefore, this improvement establishes a major advance for interactive MIP visualization of large-volume data.In parallel, we also present an object-order implementation of our algorithm, satisfying the theoretical O(n2) result. It is based on hierarchical occlusion maps that perform on-the-fly visibility of the data, and our results show that it is the most efficient solution for MIP available to date.

References

  1. Brodlie, K. and Wood, J. 2001. Recent advances in volume visualization. Comput. Graph. Forum 20, 2 (June), 125--148.Google ScholarGoogle Scholar
  2. Cabral B., Cam, N., and Foran, J. 1994. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In Proceedings of the 1994 Symposium on Volume Visualization. 91--98. Google ScholarGoogle Scholar
  3. Cai, W. and Sakas, G. 1998. Maximum intensity projection using splatting in sheared object-space. In Proceedings of EUROGRAPHICS'98. 113--124.Google ScholarGoogle Scholar
  4. Csébfalvi, B., König, A., and Gröller, E. 1999. Fast maximum intensity projection using binary shear-warp factorisation. In Proceedings of WSCG'99. 47--54.Google ScholarGoogle Scholar
  5. Glassner, A. S. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco, CA. Google ScholarGoogle Scholar
  6. Heidrich, W., McCool, M., and Stevens, J. 1995. Interactive maximum projection volume rendering. In Proceedings of IEEE Visualization'95. 11--18. Google ScholarGoogle Scholar
  7. Kim, K. H. and Park, H. W. 2001. A fast progressive method of maximum intensity projection. Comput. Med. Imaging Graph. 25, 3, 433--441.Google ScholarGoogle Scholar
  8. Lacroute, P. and Levoy, M. 1994. Fast volume rendering using a shear-warp transformation of the viewing transform. In Proceedings of ACM SIGGRAPH'94. 451--459. Google ScholarGoogle Scholar
  9. Lee, R. K. and Ihm, I. 2000. On enhancing the speed of splatting using both object-and-image space coherence. Graph. Models Image Process. 62, 4, 263--282.Google ScholarGoogle Scholar
  10. Levoy, M. 1990. Efficient ray tracing of volume data. ACM Trans. Graph. 9, 3, 245--261. Google ScholarGoogle Scholar
  11. Malzbender, T. 1993. Fourier volume rendering. ACM Trans. Graph. 12, 3, 233--250. Google ScholarGoogle Scholar
  12. Mora, B., Jessel, J. P., and Caubet, R. 2000. Accelerating volume rendering with quantized voxels. In Proceedings of IEEE/ACM SIGGRAPH Visualization and Graphics Symposium. 80--87. Google ScholarGoogle Scholar
  13. Mora, B., Jessel, J. P., and Caubet, R. 2002. A new object-order ray-casting algorithm. In Proceedings of IEEE Visualization'2002 (Boston, MA, October). 203--210. Google ScholarGoogle Scholar
  14. Mroz, L., Hauser, H., and Gröller, E. 2000a. Interactive high-quality maximum intensity projection. In Proceedings of EUROGRAPHICS'2000. 341--350.Google ScholarGoogle Scholar
  15. Mroz, L., König, A., and Gröller, E. 2000b. Maximum intensity projection at warp speed. Comput. Graph. 24, 3 (June), 343--352.Google ScholarGoogle Scholar
  16. Parker, S., Parker, M., Livnat, Y., Sloan, P-P., Hansen, C., and Shirley, P. 1999. Interactive ray tracing for volume visualization. IEEE Trans. Vis. Comput. Graph. 5, 3, 238--250. Google ScholarGoogle Scholar
  17. Pekar V., Hempel, D., Kiefer, G., Busch M., and Wees, J. 2003. Efficient visualization of large medical image datasets on standard PC hardware. In Proceedings of VisSym'2003. 135--140. Google ScholarGoogle Scholar
  18. Pfister, H., Hardenbergh, J., Knittel, J., Lauer, H., and Seiler, L. 1999. The volume pro real-time ray-casting system. In Proceedings of ACM SIGGRAPH'99. 251--260. Google ScholarGoogle Scholar
  19. Resk-Salama, C., Engel, K., Bauer, M., Greiner, G., and Ertl, T. 2000. Interactive volume rendering on standard PC hardware platform using multi-texture and multistage rasterization. In Proceedings of EUROGRAPHICS/SIGGRAPH Workshop on Graphics Hardware. 109--118. Google ScholarGoogle Scholar
  20. Revelles, J., Ureña, C., and Lastra, M. 2000. An efficient parametric algorithm for octree traversal. In Proceedings of WSCG'2000. 212--219.Google ScholarGoogle Scholar
  21. Roerdink, J. B. T. M. 2001. Multiresolution maximum intensity volume rendering by morphological pyramids. In Proceedings of VisSym'01. 45--54. Google ScholarGoogle Scholar
  22. Sakas, G., Grimm, M., and Savopoulos, A. 1995. Optimized maximum intensity projection. In Proceedings of the 5th EUROGRAPHICS Workshop on Rendering Techniques. 55--63.Google ScholarGoogle Scholar
  23. Sato, Y., Shiraga, N., Nakajima, S., Tamura, S., and Kikinis, R. 1998. Local maximum intensity projection (LMIP): A new rendering method for vascular visualization. J. comput. Assist. Tomogr. 22, 6, 912--919.Google ScholarGoogle Scholar
  24. Westover, L. 1990. Footprint evaluation for volume rendering. In Proceedings of ACM SIGGRAPH'90. 367--376. Google ScholarGoogle Scholar
  25. Wilhelms, J. and Van Gelder, A. 1992. Octrees for faster Isosurface generation. ACM Trans. Graph. 11, 3 (July), 201--227. Google ScholarGoogle Scholar
  26. Zhang, H., Manocha, D., Hudson, T., and Hoff, K. E. 1997. Visibility culling using hierarchical occlusion maps. In Proceedings of ACM SIGGRAPH'97. 77--88. Google ScholarGoogle Scholar
  27. Zuiderveld, K. J., J. Koning, A. H., and Viergever, M. A. 1994. Techniques for speeding up high-quality perspective maximum intensity projection. Patt. Recogn. Lett. 15, 507--517. Google ScholarGoogle Scholar

Index Terms

  1. Low-complexity maximum intensity projection

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader