skip to main content
10.1145/1060590.1060609acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Beyond NP: the work and legacy of Larry Stockmeyer

Published:22 May 2005Publication History

ABSTRACT

Shortly after Steve Cook and Richard Karp showed the ex-istence of many natural NP-complete languages, researchers started to realize the great importance of the P versus NP problem and the difficulty of settling it. One graduate student at the Massachusetts Institute of Technology started to look beyond NP, asking what problems have a higher complexity and how do we classify them. Larry Stockmeyer discovered an amazing structure of complexity classes that continues to direct the research in complexity to this day. Stockmeyer passed away on July 31, 2004 at the age of 55 and in this paper we review some of his research and the legacy he has left on the community.

References

  1. S. Aaronson. The complexity zoo. http://complexityzoo.com.Google ScholarGoogle Scholar
  2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. Journal of the ACM, 45(3):501--555, May 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45(1):70--122, January 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Babai. Trading group theory for randomness. In Proceedings of the 17th ACM Symposium on the Theory of Computing, pages 421-429. ACM, New York, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254-276, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Baker, J. Gill, and R. Solovay. Relativizations of the P = NP question. SIAM Journal on Computing, 4(4):431-442, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses using an NP-oracle. Information and Computation, 163:510-526, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs? Information Processing Letters, 25(2):127--132, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Boppana and M. Sipser. The complexity of finite functions. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 14, pages 757--804. North-Holland, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. R. Britt. Universe measured: We're 156 billion light-years wide!, May 2004. Space.com.Google ScholarGoogle Scholar
  11. N. Bshouty, R. Cleve, R. Gavald'a, S. Kannan, and C. Tamon. Oracles and queries that are sufficient for exact learning. Journal of Computer and System Sciences, 52(3):421--433, June 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Cai. Sp2⊆ZPPNP. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pages 620--628. IEEE, New York, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM, 28(1):114--133, 1981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Chandra and L. Stockmeyer. Alternation. In Proceedings of the 17th IEEE Symposium on Foundations of Computer Science, pages 98--109. IEEE, New York, 1976.Google ScholarGoogle Scholar
  15. S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM Symposium on the Theory of Computing, pages 151--158. ACM, New York, 1971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Dwork and L. Stockmeyer. Finite state verifiers I: The power of interaction. Journal of the ACM, 39(4):800--828, October 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Eppstein. Computational complexity of games and puzzles. http://www.ics.uci.edu/~eppstein/cgt/hard.html.Google ScholarGoogle Scholar
  18. S. Even and R. Tarjan. A combinatorial problem which is complete in polynomial space. Journal of the ACM, 23(4):710--719, October 1976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. Karp, editor, Complexity of computation, volume 7 of SIAM-AMS Proceedings, pages 43--73. Society for Industrial and Applied Mathematics, 1974.Google ScholarGoogle Scholar
  20. U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268--292, March 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Fraenkel, M. Garey, D. Johnson, T. Schaefer, and Y. Yesha. The complexity of checkers on an N-N board. In Proceedings of the 19th IEEE Symposium on Foundations of Computer Science, pages 55--64. IEEE, New York, 1978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the polynomial-time hierarchy. Mathematical Systems Theory, 17:13--27, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  23. M. Garey and D. Johnson. Computers and Intractability. A Guide to the theory of NP-completeness. W. H. Freeman and Company, New York, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691--729, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. SIAM Journal on Computing, 18(1):186--208, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. In S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research, pages 73--90. JAI Press, Greenwich, 1989.Google ScholarGoogle Scholar
  27. J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117:285--306, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. H&229;stad. Almost optimal lower bounds for small depth circuits. In S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research, pages 143--170. JAI Press, Greenwich, 1989.Google ScholarGoogle Scholar
  29. N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Computing,17(5):935-938, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. In Proceedings of the 33rd ACM Symposium on the Theory of Computing, pages 712--721. ACM, New York, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43:169--188, 1986. Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. SIAM Journal on Computing, 17(6):1263--1282, December 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of Computer Computations, pages 85--103. Plenum Press, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  34. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proceedings of the 12th ACM Symposium on the Theory of Computing, pages 302-309. ACM, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Klivans and D. van Melkebeek. Graph nonisomorhism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing, 31(5):1501-1526, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. K. Ko. Relativized polynomial time hierarchies having exactly k levels. SIAM Journal on Computing, 18:392--408, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM Journal on Computing, 28(1):311-324, February 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. D. Kozen. On parallelism in Turing machines. In Proceedings of the 17th IEEE Symposium on Foundations of Computer Science, pages 89-97. IEEE, New York, 1976.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. L. Levin. Universal'nyie perebornyie zadachi (Universal search problems: in Russian). Problemy Peredachi Informatsii, 9(3):265--266, 1973. Corrected English translation in {64}.Google ScholarGoogle Scholar
  40. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. Journal of the ACM, 39(4):859--868, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space. In Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, pages 125--129. IEEE, New York, 1972.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. L. Meyer. Weak monadic second-order theory of successor is not elementary recursive. In Proceedings of the Boston University Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 132--154. Springer, 1975.Google ScholarGoogle Scholar
  43. C. Papadimitriou. Games against nature. Journal of Computer and System Sciences, 31:288--301, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. F. Pohl. Beyond the Blue Event Horizon. Ballantine Books, 1980. Chapter 12.Google ScholarGoogle Scholar
  45. J. Robson. N - N checkers is EXPTIME complete. SIAM Journal on Computing, 13(2):252--267, May 1984.Google ScholarGoogle Scholar
  46. A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational Complexity, 7(2):152--162, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. W. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences, pages 365--383, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  48. W. Savitch. Relationship between nondeterministic and deterministic tape classes. Journal of Computer and System Sciences, 4:177--192, 1970.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. M. Schaefer. Deciding the vapnik-chervonenkis dimension is -complete. Journal of Computer and System Sciences, 58:177-182, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Schaefer and C. Umans. Complete in the polynomial-time hierarchy: a compendium. SIGACT News, 33(3):32--49, September 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. T. Schaefer. On the complexity of some two-person perfect information games. Journal of Computer and System Sciences, 16:185--225, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  52. R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. In Proceedings of the 20th IEEE Conference on Computational Complexity. IEEE Computer Society, Los Alamitos, 2005. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869--877, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th ACM Symposium on the Theory of Computing, pages 61-69. ACM, New York, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th ACM Symposium on the Theory of Computing, pages 330--335. ACM, New York, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. L. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD thesis, Massachusetts Institute of Technology, June 1974.Google ScholarGoogle Scholar
  57. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1--22, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  58. L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing, 14(4):1--13, November 1985.Google ScholarGoogle ScholarCross RefCross Ref
  59. L. Stockmeyer and A. Chandra. Provably difficult combinatorial games. SIAM Journal on Computing, 8(2):151--174, May 1979.Google ScholarGoogle ScholarCross RefCross Ref
  60. L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In Proceedings of the 5th ACM Symposium on the Theory of Computing, pages 1--9. ACM, New York, 1973. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. L. Stockmeyer and A. Meyer. Cosmological lower bound on the circuit complexity of a small problem in logic. Journal of the ACM, 49(6):753-784, November 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26:279--284, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865--877, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. R. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force search) algorithms. Annals of the History of Computing, 6(4):384--400, 1984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. C. Umans. Hardness of approximating Σp2 minimization problems. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, pages 465--474. IEEE, New York, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. C. Umans. The minimum equivalent DNF problem and shortest implicants. Journal of Computer and System Sciences, 63(4):597--611, December 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189--201, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  68. L. Valiant. The complexity of reliability and enumeration problems. SIAM Journal on Computing, 8:410--421, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  69. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science, 3:23--33, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  70. A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pages 1--10. IEEE, New York, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Beyond NP: the work and legacy of Larry Stockmeyer

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              STOC '05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing
              May 2005
              778 pages
              ISBN:1581139608
              DOI:10.1145/1060590

              Copyright © 2005 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 22 May 2005

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              Overall Acceptance Rate1,469of4,586submissions,32%

              Upcoming Conference

              STOC '24
              56th Annual ACM Symposium on Theory of Computing (STOC 2024)
              June 24 - 28, 2024
              Vancouver , BC , Canada

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader