skip to main content
article

Abstract versus concrete computation on metric partial algebras

Published:01 October 2004Publication History
Skip Abstract Section

Abstract

In the theory of computation on topological algebras there is a considerable gap between so-called abstract and concrete models of computation. In concrete models, unlike abstract models, the computations depend on the representation of the algebra. First, we show that with abstract models, one needs algebras with <i>partial operations</i>, and computable functions that are both <i>continuous</i> and <i>many-valued</i>. This many-valuedness is needed even to compute single-valued functions, and so <i>abstract models must be nondeterministic even to compute deterministic problems</i>. As an abstract model, we choose the "while"-array programming language, extended with a nondeterministic "countable choice" assignment, called the <i><b>WhileCC*</b></i> model. Using this, we introduce the concept of <i>approximable many-valued computation</i> on metric algebras. For our concrete model, we choose metric algebras with <i>effective representations</i>. We prove:(1) for any metric algebra <i>A</i> with an effective representation α, <i><b>WhileCC*</b></i> approximability implies computability in α, and (2) also the converse, under certain reasonable conditions on <i>A</i>. From (1) and (2) we derive an equivalence theorem between abstract and concrete computation on metric partial algebras. We give examples of algebras where this equivalence holds.

References

  1. Aberth, O. 1980. Computable Analysis. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  2. Aberth, O. 2001. Computable Calculus. Addison-Wesley, Reading, MA.Google ScholarGoogle Scholar
  3. Apt, K. and Olderog, E.-R. 1991. Verification of Sequential and Concurrent Programs. Springer-Verlag, Berlin, Germany. Google ScholarGoogle Scholar
  4. Blum, L., Cucker, F., Shub, M., and Smale, S. 1998. Complexity and Real Computation. Springer-Verlag, Berlin, Germany. Google ScholarGoogle Scholar
  5. Blum, L., Shub, M., and Smale, S. 1989. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. 21, 1--46.Google ScholarGoogle Scholar
  6. Brattka, V. 1996. Recursive characterisation of computable real-valued functions and relations. Theoret. Comput. Sci. 162, 45--77. Google ScholarGoogle Scholar
  7. Brattka, V. 1999. Recursive and computable operations over topological structures. Ph.D. dissertation, FernUniversität Hagen, Fachbereich Informatik, Hagen, Germany. Informatik Berichte 255, FernUniversität Hagen, July 1999.Google ScholarGoogle Scholar
  8. Ceitin, G. 1959. Algebraic operators in constructive complete separable metric spaces. Dok. Akad. Nauk SSSR 128, 49--52.Google ScholarGoogle Scholar
  9. de Bakker, J. 1980. Mathematical Theory of Program Correctness. Prentice Hall, Englewood Cliffs, NJ. Google ScholarGoogle Scholar
  10. Dijkstra, E. 1976. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ. Google ScholarGoogle Scholar
  11. Edalat, A. 1995. Dynamical systems, measures, and fractals via domain theory. Inform. Computat. 120, 32--48. Google ScholarGoogle Scholar
  12. Edalat, A. 1997. Domains for computation in mathematics, physics and exact real arithmetic. Bull. Symbol. Log. 3, 401--452.Google ScholarGoogle Scholar
  13. Engelking, R. 1989. General Topology. Heldermann Verlag, Berlin, Lemge, Germany.Google ScholarGoogle Scholar
  14. Goguen, J., Thatcher, J., and Wagner, E. 1978. An initial approach to the specification, correctness and implementation of abstract data types. In Current Trends in Programming Methodology, vol. 4: Data Structuring, R. Yeh, Ed. Prentice Hall, Englewood Cliffs, NJ, 80--149.Google ScholarGoogle Scholar
  15. Grzegorczyk, A. 1955. Computable functions. Fundamenta Mathematicae 42, 168--202.Google ScholarGoogle Scholar
  16. Grzegorczyk, A. 1957. On the defintions of computable real continuous functions. Fundamenta Mathematicae 44, 61--71.Google ScholarGoogle Scholar
  17. Heath, M. 1997. Scientific Computing: An Introductory Survey. McGraw-Hill, New York, NY. Google ScholarGoogle Scholar
  18. Lacombe, D. 1955. Extension de la notion de fonction récursive aux fonctions d'une ou plusieurs variables réelles, I, II, III. C.R. Acad. Sci. Paris. 240, 2470--2480; 241, 13--14, 151--153.Google ScholarGoogle Scholar
  19. Meseguer, J. and Goguen, J. 1985. Initiality, induction and computability. In Algebraic Methods in Semantics, M. Nivat and J. Reynolds, Eds. Cambridge University Press, Cambridge, U.K., 459--541. Google ScholarGoogle Scholar
  20. Moschovakis, Y. 1964. Recursive metric spaces. Fundamenta Mathematicae 55, 215--238.Google ScholarGoogle Scholar
  21. Odifreddi, P. 1999. Classical Recursion Theory, 21st ed. North Holland, Amsterdam, The Netherlands.Google ScholarGoogle Scholar
  22. Pour-El, M. and Richards, J. 1989. Computability in Analysis and Physics. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  23. Royden, H. 1963. Real Analysis. Macmillan, London, U.K.Google ScholarGoogle Scholar
  24. Spreen, D. 1998. On effective topological spaces. J. Symbol. Log. 63, 185--221.Google ScholarGoogle Scholar
  25. Spreen, D. 2001. Representations versus numberings: On the relationship of two computability notions. Theoret. Comput. Sci. 263, 473--499. Google ScholarGoogle Scholar
  26. Stephenson, K. 1996. An algebraic approach to syntax, semantics and computation. Ph.D. dissertation, Department of Computer Science, University of Wales, Swansea, U.K.Google ScholarGoogle Scholar
  27. Stewart, K. 1998. Concrete and abstract models of computation over metric algebras. Ph.D. dissertation, Department of Computer Science, University of Wales, Swansea, U.K.Google ScholarGoogle Scholar
  28. Stoltenberg-Hansen, V. and Tucker, J. 1988. Complete local rings as domains. J. Symbol. Log. 53, 603--624.Google ScholarGoogle Scholar
  29. Stoltenberg-Hansen, V. and Tucker, J. 1995. Effective algebras. In Handbook of Logic in Computer Science, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Vol. 4. Oxford University Press, Oxford, U.K., 357--526. Google ScholarGoogle Scholar
  30. Stoltenberg-Hansen, V. and Tucker, J. 1999. Concrete models of computation for topological algebras. Theoret. Comput. Sci. 219, 347--378. Google ScholarGoogle Scholar
  31. Taylor, A. and Lay, D. 1980. Introduction to Functional Analysis. John Wiley & Sons, New York, NY. Google ScholarGoogle Scholar
  32. Tucker, J. and Zucker, J. 1988. Program Correctness over Abstract Data Types, with Error-State Semantics. CWI Monographs, vol. 6. North Holland, Amsterdam, The Netherlands. Google ScholarGoogle Scholar
  33. Tucker, J. and Zucker, J. 1992a. Examples of semicomputable sets of real and complex numbers. In Constructivity in Computer Science: Summer Symposium, San Antonio, Texas, June 1991, J. Myers, Jr. and M. O'Donnell, Eds. Lecture Notes in Computer Science, vol. 613. Springer-Verlag, Berlin, Germany, 179--198. Google ScholarGoogle Scholar
  34. Tucker, J. and Zucker, J. 1992b. Theory of computation over stream algebras, and its applications. In Mathematical Foundations of Computer Science 1992: 17th International Symposium, Prague, I. Havel and V. Koubek, Eds. Lecture Notes in Computer Science, vol. 629. Springer-Verlag, Berlin, Germany, 62--80. Google ScholarGoogle Scholar
  35. Tucker, J. and Zucker, J. 1994. Computable functions on stream algebras. In Proof and Computation: NATO Advanced Study Institute International Summer School at Marktoberdorf, 1993, H. Schwichtenberg, Ed. Springer-Verlag, Berlin, Germany, 341--382.Google ScholarGoogle Scholar
  36. Tucker, J. and Zucker, J. 1999. Computation by 'while' programs on topological partial algebras. Theoret. Comput. Sci. 219, 379--420. Google ScholarGoogle Scholar
  37. Tucker, J. and Zucker, J. 2000. Computable functions and semicomputable sets on many-sorted algebras. In Handbook of Logic in Computer Science, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Vol. 5. Oxford University Press, Oxford, U.K., 317--523. Google ScholarGoogle Scholar
  38. Tucker, J. and Zucker, J. 2002a. Abstract computability and algebraic specification. ACM Trans. Computat. Log. 3, 279--333. Google ScholarGoogle Scholar
  39. Tucker, J. and Zucker, J. 2002b. Computable total functions on metric algebras, universal algebraic specifications and dynamical systems. Tech. rep. CAS 02-04-JZ, Department of Computing & Software, McMaster University, Hamilton, Ont., Canada. (Accepted for publication in Journal of Logic and Algebraic Programming.)Google ScholarGoogle Scholar
  40. Weihrauch, K. 2000. Computable Analysis: An Introduction. Springer-Verlag, Berlin, Germany. Google ScholarGoogle Scholar
  41. Wirsing, M. 1991. Algebraic specification. In Handbook of Theoretical Computer Science, Vol. B: Formal Methods and Semantics, J. van Leeuwen, Ed. North Holland, Amsterdam, The Netherlands, 675--788. Google ScholarGoogle Scholar

Index Terms

  1. Abstract versus concrete computation on metric partial algebras

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader